/* * Copyright (C) 2016, 2017, 2018 "IoT.bzh" * Author José Bollo * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define _GNU_SOURCE #if defined(NO_JOBS_WATCHDOG) # define HAS_WATCHDOG 0 #else # define HAS_WATCHDOG 1 #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "fdev.h" #if HAS_WATCHDOG #include #endif #include "jobs.h" #include "sig-monitor.h" #include "verbose.h" #include "fdev-epoll.h" #if 0 #define _alert_ "do you really want to remove signal monitoring?" #define sig_monitor_init_timeouts() ((void)0) #define sig_monitor_clean_timeouts() ((void)0) #define sig_monitor(to,cb,arg) (cb(0,arg)) #endif #define EVENT_TIMEOUT_TOP ((uint64_t)-1) #define EVENT_TIMEOUT_CHILD ((uint64_t)10000) /** Internal shortcut for callback */ typedef void (*job_cb_t)(int, void*); /** Description of a pending job */ struct job { struct job *next; /**< link to the next job enqueued */ const void *group; /**< group of the request */ job_cb_t callback; /**< processing callback */ void *arg; /**< argument */ int timeout; /**< timeout in second for processing the request */ unsigned blocked: 1; /**< is an other request blocking this one ? */ unsigned dropped: 1; /**< is removed ? */ }; /** Description of handled event loops */ struct evloop { unsigned state; /**< encoded state */ int efd; /**< event notification */ struct sd_event *sdev; /**< the systemd event loop */ pthread_cond_t cond; /**< condition */ struct fdev *fdev; /**< handling of events */ }; #define EVLOOP_STATE_WAIT 1U #define EVLOOP_STATE_RUN 2U #define EVLOOP_STATE_LOCK 4U /** Description of threads */ struct thread { struct thread *next; /**< next thread of the list */ struct thread *upper; /**< upper same thread */ struct job *job; /**< currently processed job */ pthread_t tid; /**< the thread id */ volatile unsigned stop: 1; /**< stop requested */ volatile unsigned waits: 1; /**< is waiting? */ }; /** * Description of synchonous callback */ struct sync { struct thread thread; /**< thread loop data */ union { void (*callback)(int, void*); /**< the synchronous callback */ void (*enter)(int signum, void *closure, struct jobloop *jobloop); /**< the entering synchronous routine */ }; void *arg; /**< the argument of the callback */ }; /* synchronisation of threads */ static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t cond = PTHREAD_COND_INITIALIZER; /* count allowed, started and running threads */ static int allowed = 0; /** allowed count of threads */ static int started = 0; /** started count of threads */ static int running = 0; /** running count of threads */ static int remains = 0; /** allowed count of waiting jobs */ /* list of threads */ static struct thread *threads; static _Thread_local struct thread *current_thread; static _Thread_local struct evloop *current_evloop; /* queue of pending jobs */ static struct job *first_job; static struct job *free_jobs; /* event loop */ static struct evloop evloop[1]; static struct fdev_epoll *fdevepoll; #if !defined(REMOVE_SYSTEMD_EVENT) __attribute__((unused)) #endif static int waitevt; /** * Create a new job with the given parameters * @param group the group of the job * @param timeout the timeout of the job (0 if none) * @param callback the function that achieves the job * @param arg the argument of the callback * @return the created job unblock or NULL when no more memory */ static struct job *job_create( const void *group, int timeout, job_cb_t callback, void *arg) { struct job *job; /* try recyle existing job */ job = free_jobs; if (job) free_jobs = job->next; else { /* allocation without blocking */ pthread_mutex_unlock(&mutex); job = malloc(sizeof *job); pthread_mutex_lock(&mutex); if (!job) { errno = -ENOMEM; goto end; } } /* initialises the job */ job->group = group; job->timeout = timeout; job->callback = callback; job->arg = arg; job->blocked = 0; job->dropped = 0; end: return job; } /** * Adds 'job' at the end of the list of jobs, marking it * as blocked if an other job with the same group is pending. * @param job the job to add */ static void job_add(struct job *job) { const void *group; struct job *ijob, **pjob; /* prepare to add */ group = job->group; job->next = NULL; /* search end and blockers */ pjob = &first_job; ijob = first_job; while (ijob) { if (group && ijob->group == group) job->blocked = 1; pjob = &ijob->next; ijob = ijob->next; } /* queue the jobs */ *pjob = job; } /** * Get the next job to process or NULL if none. * @return the first job that isn't blocked or NULL */ static inline struct job *job_get() { struct job *job = first_job; while (job && job->blocked) job = job->next; return job; } /** * Releases the processed 'job': removes it * from the list of jobs and unblock the first * pending job of the same group if any. * @param job the job to release */ static inline void job_release(struct job *job) { struct job *ijob, **pjob; const void *group; /* first unqueue the job */ pjob = &first_job; ijob = first_job; while (ijob != job) { pjob = &ijob->next; ijob = ijob->next; } *pjob = job->next; /* then unblock jobs of the same group */ group = job->group; if (group) { ijob = job->next; while (ijob && ijob->group != group) ijob = ijob->next; if (ijob) ijob->blocked = 0; } /* recycle the job */ job->next = free_jobs; free_jobs = job; } /** * Monitored cancel callback for a job. * This function is called by the monitor * to cancel the job when the safe environment * is set. * @param signum 0 on normal flow or the number * of the signal that interrupted the normal * flow, isn't used * @param arg the job to run */ static void job_cancel(int signum, void *arg) { struct job *job = arg; job->callback(SIGABRT, job->arg); } /** * Gets a fdev_epoll item. * @return a fdev_epoll or NULL in case of error */ static struct fdev_epoll *get_fdevepoll() { struct fdev_epoll *result; result = fdevepoll; if (!result) result = fdevepoll = fdev_epoll_create(); return result; } /** * Monitored normal callback for events. * This function is called by the monitor * to run the event loop when the safe environment * is set. * @param signum 0 on normal flow or the number * of the signal that interrupted the normal * flow * @param arg the events to run */ static void evloop_run(int signum, void *arg) { int rc; struct sd_event *se; struct evloop *el = arg; if (!signum) { current_evloop = el; __atomic_store_n(&el->state, EVLOOP_STATE_LOCK|EVLOOP_STATE_RUN|EVLOOP_STATE_WAIT, __ATOMIC_RELAXED); se = el->sdev; rc = sd_event_prepare(se); if (rc < 0) { errno = -rc; ERROR("sd_event_prepare returned an error (state: %d): %m", sd_event_get_state(se)); } else { if (rc == 0) { rc = sd_event_wait(se, (uint64_t)(int64_t)-1); if (rc < 0) { errno = -rc; ERROR("sd_event_wait returned an error (state: %d): %m", sd_event_get_state(se)); } } __atomic_and_fetch(&el->state, ~(EVLOOP_STATE_WAIT), __ATOMIC_RELAXED); if (rc > 0) { rc = sd_event_dispatch(se); if (rc < 0) { errno = -rc; ERROR("sd_event_dispatch returned an error (state: %d): %m", sd_event_get_state(se)); } } } } __atomic_and_fetch(&el->state, ~(EVLOOP_STATE_WAIT|EVLOOP_STATE_RUN), __ATOMIC_RELAXED); } /** * Monitored normal loop for waiting events. * @param signum 0 on normal flow or the number * of the signal that interrupted the normal * flow * @param arg the events to run */ #if !defined(REMOVE_SYSTEMD_EVENT) __attribute__((unused)) #endif static void monitored_wait_and_dispatch(int signum, void *arg) { struct fdev_epoll *fdev_epoll = arg; if (!signum) { fdev_epoll_wait_and_dispatch(fdev_epoll, -1); } } /** * Main processing loop of threads processing jobs. * The loop must be called with the mutex locked * and it returns with the mutex locked. * @param me the description of the thread to use * TODO: how are timeout handled when reentering? */ static void thread_run(volatile struct thread *me) { struct thread **prv; struct job *job; #if !defined(REMOVE_SYSTEMD_EVENT) struct evloop *el; #endif /* initialize description of itself and link it in the list */ me->tid = pthread_self(); me->stop = 0; me->waits = 0; me->upper = current_thread; if (!current_thread) { started++; sig_monitor_init_timeouts(); } me->next = threads; threads = (struct thread*)me; current_thread = (struct thread*)me; /* loop until stopped */ while (!me->stop) { /* release the event loop */ if (current_evloop) { __atomic_and_fetch(¤t_evloop->state, ~EVLOOP_STATE_LOCK, __ATOMIC_RELAXED); current_evloop = NULL; } /* get a job */ job = job_get(); if (job) { /* prepare running the job */ remains++; /* increases count of job that can wait */ job->blocked = 1; /* mark job as blocked */ me->job = job; /* record the job (only for terminate) */ /* run the job */ pthread_mutex_unlock(&mutex); sig_monitor(job->timeout, job->callback, job->arg); pthread_mutex_lock(&mutex); /* release the run job */ job_release(job); #if !defined(REMOVE_SYSTEMD_EVENT) } else { /* no job, check events */ el = &evloop[0]; if (el->sdev && !__atomic_load_n(&el->state, __ATOMIC_RELAXED)) { /* run the events */ __atomic_store_n(&el->state, EVLOOP_STATE_LOCK|EVLOOP_STATE_RUN|EVLOOP_STATE_WAIT, __ATOMIC_RELAXED); current_evloop = el; pthread_mutex_unlock(&mutex); sig_monitor(0, evloop_run, el); pthread_mutex_lock(&mutex); } else { /* no job and not events */ running--; if (!running) ERROR("Entering job deep sleep! Check your bindings."); me->waits = 1; pthread_cond_wait(&cond, &mutex); me->waits = 0; running++; } #else } else if (waitevt) { /* no job and not events */ running--; if (!running) ERROR("Entering job deep sleep! Check your bindings."); me->waits = 1; pthread_cond_wait(&cond, &mutex); me->waits = 0; running++; } else { /* wait for events */ waitevt = 1; pthread_mutex_unlock(&mutex); sig_monitor(0, monitored_wait_and_dispatch, get_fdevepoll()); pthread_mutex_lock(&mutex); waitevt = 0; #endif } } /* release the event loop */ if (current_evloop) { __atomic_and_fetch(¤t_evloop->state, ~EVLOOP_STATE_LOCK, __ATOMIC_RELAXED); current_evloop = NULL; } /* unlink the current thread and cleanup */ prv = &threads; while (*prv != me) prv = &(*prv)->next; *prv = me->next; current_thread = me->upper; if (!current_thread) { sig_monitor_clean_timeouts(); started--; } } /** * Entry point for created threads. * @param data not used * @return NULL */ static void *thread_main(void *data) { struct thread me; pthread_mutex_lock(&mutex); running++; thread_run(&me); running--; pthread_mutex_unlock(&mutex); return NULL; } /** * Starts a new thread * @return 0 in case of success or -1 in case of error */ static int start_one_thread() { pthread_t tid; int rc; rc = pthread_create(&tid, NULL, thread_main, NULL); if (rc != 0) { /* errno = rc; */ WARNING("not able to start thread: %m"); rc = -1; } return rc; } /** * Queues a new asynchronous job represented by 'callback' and 'arg' * for the 'group' and the 'timeout'. * Jobs are queued FIFO and are possibly executed in parallel * concurrently except for job of the same group that are * executed sequentially in FIFO order. * @param group The group of the job or NULL when no group. * @param timeout The maximum execution time in seconds of the job * or 0 for unlimited time. * @param callback The function to execute for achieving the job. * Its first parameter is either 0 on normal flow * or the signal number that broke the normal flow. * The remaining parameter is the parameter 'arg1' * given here. * @param arg The second argument for 'callback' * @return 0 in case of success or -1 in case of error */ int jobs_queue( const void *group, int timeout, void (*callback)(int, void*), void *arg) { const char *info; struct job *job; int rc; pthread_mutex_lock(&mutex); /* allocates the job */ job = job_create(group, timeout, callback, arg); if (!job) { errno = ENOMEM; info = "out of memory"; goto error; } /* check availability */ if (remains == 0) { errno = EBUSY; info = "too many jobs"; goto error2; } /* start a thread if needed */ if (running == started && started < allowed) { /* all threads are busy and a new can be started */ rc = start_one_thread(); if (rc < 0 && started == 0) { info = "can't start first thread"; goto error2; } } /* queues the job */ remains--; job_add(job); /* signal an existing job */ pthread_cond_signal(&cond); pthread_mutex_unlock(&mutex); return 0; error2: job->next = free_jobs; free_jobs = job; error: ERROR("can't process job with threads: %s, %m", info); pthread_mutex_unlock(&mutex); return -1; } /** * Internal helper function for 'jobs_enter'. * @see jobs_enter, jobs_leave */ static void enter_cb(int signum, void *closure) { struct sync *sync = closure; sync->enter(signum, sync->arg, (void*)&sync->thread); } /** * Internal helper function for 'jobs_call'. * @see jobs_call */ static void call_cb(int signum, void *closure) { struct sync *sync = closure; sync->callback(signum, sync->arg); jobs_leave((void*)&sync->thread); } /** * Internal helper for synchronous jobs. It enters * a new thread loop for evaluating the given job * as recorded by the couple 'sync_cb' and 'sync'. * @see jobs_call, jobs_enter, jobs_leave */ static int do_sync( const void *group, int timeout, void (*sync_cb)(int signum, void *closure), struct sync *sync ) { struct job *job; pthread_mutex_lock(&mutex); /* allocates the job */ job = job_create(group, timeout, sync_cb, sync); if (!job) { ERROR("out of memory"); errno = ENOMEM; pthread_mutex_unlock(&mutex); return -1; } /* queues the job */ job_add(job); /* run until stopped */ thread_run(&sync->thread); pthread_mutex_unlock(&mutex); return 0; } /** * Enter a synchronisation point: activates the job given by 'callback' * and 'closure' using 'group' and 'timeout' to control sequencing and * execution time. * @param group the group for sequencing jobs * @param timeout the time in seconds allocated to the job * @param callback the callback that will handle the job. * it receives 3 parameters: 'signum' that will be 0 * on normal flow or the catched signal number in case * of interrupted flow, the context 'closure' as given and * a 'jobloop' reference that must be used when the job is * terminated to unlock the current execution flow. * @param closure the argument to the callback * @return 0 on success or -1 in case of error */ int jobs_enter( const void *group, int timeout, void (*callback)(int signum, void *closure, struct jobloop *jobloop), void *closure ) { struct sync sync; sync.enter = callback; sync.arg = closure; return do_sync(group, timeout, enter_cb, &sync); } /** * Unlocks the execution flow designed by 'jobloop'. * @param jobloop indication of the flow to unlock * @return 0 in case of success of -1 on error */ int jobs_leave(struct jobloop *jobloop) { struct thread *t; pthread_mutex_lock(&mutex); t = threads; while (t && t != (struct thread*)jobloop) t = t->next; if (!t) { errno = EINVAL; } else { t->stop = 1; if (t->waits) pthread_cond_broadcast(&cond); } pthread_mutex_unlock(&mutex); return -!t; } /** * Calls synchronously the job represented by 'callback' and 'arg1' * for the 'group' and the 'timeout' and waits for its completion. * @param group The group of the job or NULL when no group. * @param timeout The maximum execution time in seconds of the job * or 0 for unlimited time. * @param callback The function to execute for achieving the job. * Its first parameter is either 0 on normal flow * or the signal number that broke the normal flow. * The remaining parameter is the parameter 'arg1' * given here. * @param arg The second argument for 'callback' * @return 0 in case of success or -1 in case of error */ int jobs_call( const void *group, int timeout, void (*callback)(int, void*), void *arg) { struct sync sync; sync.callback = callback; sync.arg = arg; return do_sync(group, timeout, call_cb, &sync); } /** * Internal callback for evloop management. * The effect of this function is hidden: it exits * the waiting poll if any. Then it wakes up a thread * awaiting the evloop using signal. */ static int on_evloop_efd(sd_event_source *s, int fd, uint32_t revents, void *userdata) { uint64_t x; struct evloop *evloop = userdata; read(evloop->efd, &x, sizeof x); pthread_mutex_lock(&mutex); pthread_cond_broadcast(&evloop->cond); pthread_mutex_unlock(&mutex); return 1; } /* temporary hack */ #if !defined(REMOVE_SYSTEMD_EVENT) __attribute__((unused)) #endif static void evloop_callback(void *arg, uint32_t event, struct fdev *fdev) { sig_monitor(0, evloop_run, arg); } /** * Gets a sd_event item for the current thread. * @return a sd_event or NULL in case of error */ static struct sd_event *get_sd_event_locked() { struct evloop *el; uint64_t x; int rc; /* creates the evloop on need */ el = &evloop[0]; if (!el->sdev) { /* start the creation */ el->state = 0; /* creates the eventfd for waking up polls */ el->efd = eventfd(0, EFD_CLOEXEC); if (el->efd < 0) { ERROR("can't make eventfd for events"); goto error1; } /* create the systemd event loop */ rc = sd_event_new(&el->sdev); if (rc < 0) { ERROR("can't make new event loop"); goto error2; } /* put the eventfd in the event loop */ rc = sd_event_add_io(el->sdev, NULL, el->efd, EPOLLIN, on_evloop_efd, el); if (rc < 0) { ERROR("can't register eventfd"); #if !defined(REMOVE_SYSTEMD_EVENT) sd_event_unref(el->sdev); el->sdev = NULL; error2: close(el->efd); error1: return NULL; } #else goto error3; } /* handle the event loop */ el->fdev = fdev_epoll_add(get_fdevepoll(), sd_event_get_fd(el->sdev)); if (!el->fdev) { ERROR("can't create fdev"); error3: sd_event_unref(el->sdev); error2: close(el->efd); error1: memset(el, 0, sizeof *el); return NULL; } fdev_set_autoclose(el->fdev, 0); fdev_set_events(el->fdev, EPOLLIN); fdev_set_callback(el->fdev, evloop_callback, el); #endif } /* attach the event loop to the current thread */ if (current_evloop != el) { if (current_evloop) __atomic_and_fetch(¤t_evloop->state, ~EVLOOP_STATE_LOCK, __ATOMIC_RELAXED); current_evloop = el; __atomic_or_fetch(&el->state, EVLOOP_STATE_LOCK, __ATOMIC_RELAXED); } /* wait for a modifiable event loop */ while (__atomic_load_n(&el->state, __ATOMIC_RELAXED) & EVLOOP_STATE_WAIT) { x = 1; write(el->efd, &x, sizeof x); pthread_cond_wait(&el->cond, &mutex); } return el->sdev; } /** * Gets a sd_event item for the current thread. * @return a sd_event or NULL in case of error */ struct sd_event *jobs_get_sd_event() { struct sd_event *result; pthread_mutex_lock(&mutex); result = get_sd_event_locked(); pthread_mutex_unlock(&mutex); return result; } /** * Gets the fdev_epoll item. * @return a fdev_epoll or NULL in case of error */ struct fdev_epoll *jobs_get_fdev_epoll() { struct fdev_epoll *result; pthread_mutex_lock(&mutex); result = get_fdevepoll(); pthread_mutex_unlock(&mutex); return result; } /** * Enter the jobs processing loop. * @param allowed_count Maximum count of thread for jobs including this one * @param start_count Count of thread to start now, must be lower. * @param waiter_count Maximum count of jobs that can be waiting. * @param start The start routine to activate (can't be NULL) * @return 0 in case of success or -1 in case of error. */ int jobs_start(int allowed_count, int start_count, int waiter_count, void (*start)(int signum, void* arg), void *arg) { int rc, launched; struct thread me; struct job *job; assert(allowed_count >= 1); assert(start_count >= 0); assert(waiter_count > 0); assert(start_count <= allowed_count); rc = -1; pthread_mutex_lock(&mutex); /* check whether already running */ if (current_thread || allowed) { ERROR("thread already started"); errno = EINVAL; goto error; } /* start */ if (sig_monitor_init() < 0) { ERROR("failed to initialise signal handlers"); goto error; } /* records the allowed count */ allowed = allowed_count; started = 0; running = 0; remains = waiter_count; #if HAS_WATCHDOG /* set the watchdog */ if (sd_watchdog_enabled(0, NULL)) sd_event_set_watchdog(get_sd_event_locked(), 1); #endif /* start at least one thread */ launched = 0; while ((launched + 1) < start_count) { if (start_one_thread() != 0) { ERROR("Not all threads can be started"); goto error; } launched++; } /* queue the start job */ job = job_create(NULL, 0, start, arg); if (!job) { ERROR("out of memory"); errno = ENOMEM; goto error; } job_add(job); remains--; /* run until end */ thread_run(&me); rc = 0; error: pthread_mutex_unlock(&mutex); return rc; } /** * Terminate all the threads and cancel all pending jobs. */ void jobs_terminate() { struct job *job, *head, *tail; pthread_t me, *others; struct thread *t; int count; /* how am i? */ me = pthread_self(); /* request all threads to stop */ pthread_mutex_lock(&mutex); allowed = 0; /* count the number of threads */ count = 0; t = threads; while (t) { if (!t->upper && !pthread_equal(t->tid, me)) count++; t = t->next; } /* fill the array of threads */ others = alloca(count * sizeof *others); count = 0; t = threads; while (t) { if (!t->upper && !pthread_equal(t->tid, me)) others[count++] = t->tid; t = t->next; } /* stops the threads */ t = threads; while (t) { t->stop = 1; t = t->next; } /* wait the threads */ pthread_cond_broadcast(&cond); pthread_mutex_unlock(&mutex); while (count) pthread_join(others[--count], NULL); pthread_mutex_lock(&mutex); /* cancel pending jobs of other threads */ remains = 0; head = first_job; first_job = NULL; tail = NULL; while (head) { /* unlink the job */ job = head; head = job->next; /* search if job is stacked for current */ t = current_thread; while (t && t->job != job) t = t->upper; if (t) { /* yes, relink it at end */ if (tail) tail->next = job; else first_job = job; tail = job; job->next = NULL; } else { /* no cancel the job */ pthread_mutex_unlock(&mutex); sig_monitor(0, job_cancel, job); free(job); pthread_mutex_lock(&mutex); } } pthread_mutex_unlock(&mutex); }