AGL Continuous Integration tests

Documentation and methodology

Purpose
Introduction
Prerequisites

Test jobs
Mandatory sections
Boot and test sections
Notify section

Generate test jobs
Download the tools
Generate jobs
Test definitions

Submit test jobs
Installing lava-tool
Adding authentication credentials to lava-tool
Submitting jobs to LAVA

AGL test structure
Test plan

Reporting tests elements

From lava test shells

From other scripts

Test case
Mandatory fields
Extra fields

Test set

Test suite

Test definition
Examples: local, inline test
Basic: remote, inline test
Extensive: remote, test scripts

Add new tests to the AGL Cl Loop
[Prerequisites]
[STEP 1] Create a new test plan

[STEP 2] Link to the test definitions within the releng-scripts tool

© O 00 0o o N N NN O oo a A W W

G N U G G §
- 2 O O O O O o

O G Y
A WODNDN

=) A A -
a o o g

[STEP 3] Create the test definition on the remote repository
[STEP 4] Create the tests scripts and write the tests

[STEP 4 bis] Push the changes to the remote repo

[STEP 5] Generate the test job

[STEP 6] Submitting the test job to LAVA

Further documentation on LAVA tests

From LAVA to KernelCl
LAVA callback to KernelCl
KernelCl callback event
KernelCl frontend

15
16
16
16
16

17

18
19
19
19

Purpose

The purpose of this paper is to provide documentation to the reader on how to write
Automotive Grade Linux (AGL) Continuous Integration (Cl) tests.

Introduction

The AGL Continuous Integration loop is split into three main components:
e |AVA Cl Tools: a set of tools to generate test plans.
e LAVA: a solution that deploys operating systems onto hardware for running tests.
e KernelCl: a web service which records test results and presents them in a tailored
way for the client (AGL teams, developer, tester, automation frameworks, ...).

o &
i i
i Client | : KernelCl
i AGL Team, developer, CILOOP, ... | jweb interface Test database and frontend
B e e e ——— e —————— *
Command line tools KCI auth-token; est results
Y
_LAVA auth-token
LAVA Cl Tools LAVA
Testplan generator - Test execution and report
Description of test
to perform
Instructions Results

i Device Under Test
 (embedded platform)
1

AGL CI Architecture overview

The purpose of this document being how to write tests for AGL. It will specify how to
use the LAVA CI Tools and how to extend the set of available tests by writing new custom
tests.

The document also explains how the tests are run by LAVA and parsed by Kernel ClI
to help the user write meaningful tests. However, it does not document LAVA and Kernel CI
internal test handling.

https://git.automotivelinux.org/AGL/releng-scripts/
https://validation.linaro.org/static/docs/
http://wiki.kernelci.org/

Prerequisites

A general understanding of the AGL project helps but is not mandatory.
LAVA ClI Tools are written with Python and uses templates formatted with jinja2.
To write new tests the user needs:
o A text editor
To generate new test plans:
e Python version >=2.7.1
e Jinja2 version >= 2.9
To submit tests to a LAVA instance:
e The URL of a running LAVA instance
e An authentication token
To have the tests recorded in a KernelCl instance:
e The URL of a running KernelCl instance
e A “callback” authentication token and the corresponding LAVA lab name

Test jobs

This section documents how the tests are received, parsed and executed by LAVA
on the specified hardware. The test jobs are sent to LAVA as YAML files. Each YAML file is
called a job, because it is interpreted by LAVA as a job to execute. Hence, we will send files
to lava such as: “m3ulcb_AGL_smoketests_job.yaml”.

Mandatory sections

There are several sections in the job files. Some are mandatory such as: device_type
', protocols?, actions® and timeouts*. These sections specify all the data that has to be known
by LAVA for executing the job onto a specific device with the correct OS and boot protocol.
Timeouts are specified as well in case the board goes into an unknown state.

Other mandatory fields are: job_name, priority, visibility and notify. These sections
are used by LAVA to manage the pool of jobs received and to report each job.

Boot and test sections

With the mandatory fields defined, LAVA has all the data it needs to execute the job.
However it does not contain the job’s instructions. For that, other sections are added to the
job file. A “boot” section which is device specific. It tells LAVA how to boot the platform and
how to get a prompt for executing further instructions. Finally, the “test” section describing
the tests that we would like to perform on the platform.

Notify section

Looking at “AGL CI Architecture overview” page 3. Our job definition could now be
sent from the bottom left “LAVA CI Tools” to the bottom right “LAVA” block. The LAVA
instance would be able to perform the tests on the specified platform. However, the job
description does not specify yet information to communicate with a KernelCl instance (top
right). For this purpose a notify section has to be added. This section contains the URL of
the KernelCl instance to submit job results to as well as an authentication token.

' Lava doc for device_type.
2 Lava doc for protocols.

3 Lava doc for actions.

4 Lava doc for timeouts.

https://staging.validation.linaro.org/static/docs/v2/dispatcher-format.html?highlight=device_type
https://staging.validation.linaro.org/static/docs/v2/actions-protocols.html
https://staging.validation.linaro.org/static/docs/v2/dispatcher-actions.html
https://staging.validation.linaro.org/static/docs/v2/actions-timeout.html

: AGL-short-smoke-wip
¢ medium
: public

: Tinished

: http://api.dev.baylibre.com/callback/lavastest?lab name=Llab-baylibre-devhkstatus={STATUS}
: POST
: all
12345678 -)OO0 - 30000 - 0N - 12345678981 2
json

: rBal796-m3ulch

http://www.baylibre. com/pubSagl/ci/m3ulch-nogfx/Image

: hitp://www.baylibre.com/pub/agl/ci/m3ulcb-nogfx/initramfs-netboot-image-m3ulch.extd.gz

: http:// v Dayllibre. com/pub/agl/cl/miulch-noglx/care-image-minimal -m3ulch.extd. xz
 XZ

: hitp:/fwwse.baylibre.com/pub/agl/ci/m3ulch-nogfx/Inage- rBa7796-m3ulch. dth

: u-boot
¢ ["rootgm3ulch:~"]
“login:"
root
: booti

: nbd

i git:/fgit.limarc.org/ga/test-definitions.git
: git
: automated/linux/smoke/smoke.yaml
1 smoke-tTests

Example of test plan as sent to LAVA: “m3ulcb_AGL_smoke.yaml”

Generate test jobs

Our interest being running tests; we will use test generation tools to automatically
generate the mandatory, boot and callback sections with default and/or device specific,
values. We will see however, how to write new test sections and how to use the tools to
include them in a job file.

The tools for generating test jobs are part of releng-scripts. It is within this repo
that the list of available tests is located.

Download the tools

releng-scripts is available via git. To get the code, just clone the repo locally:

$ git clone https://git.automotivelinux.org/AGL/releng-scripts/
The up to date documentation of the tools is available in the README.md. The tools are
located in the ./utils/ folder and also provide “--help” documentation for usage.

Generate jobs

The generation tool is called: create-jobs.py

$./utils/create-jobs.py m3ulcb -o myjob.yaml
This command will generate the default job file for the specified board. In the examples, we
specified to create a new job for the Renesas m3ulcb board and write the output to the file:
“myjob.yaml”

To add test plans to the job just append the command with --test “test plan_name” to
execute only a specific test plan or “all” to run all available tests plans for the platform.
$./utils/create-jobs.py m3ulcb -o myjob.yaml --test all

To add callbacks to submit the job results to a KernelCl instance append the command with
--callback “lava-lab-name”. Within releng-scripts, the callback folder contains predefined
LAVA labs and corresponding KernelCl instances to submit the results to. The
lava-lab-name defines the lab name as registered with the kernelCl backend instance and
the authentication token to use.

$./utils/create-jobs.py m3ulcb -0 myjob.yaml --test all --callback
lab-baylibre-lavabox

Test definitions

The test plans definitions are located in the ./templates/tests/ folder. Each file within
this folder describes a test plan. Every test plan may contain several test definitions. Further
in the doc is documented how to add test plan to the existing pool, and how to write test
definitions.

https://git.automotivelinux.org/AGL/releng-scripts/

Submit test jobs

The tool for submitting test jobs is called lava-tool. The documentation for using the
tool to submit jobs to a LAVA instance is available here.

Installing lava-tool

The latest version of lava-tool is available in the Debian jessie-backports: lava-tool.
Just install it like a classic deb file.

Adding authentication credentials to lava-tool

Before submitting jobs the user needs to add his authentication credentials to

lava-tool.
Let's assume that the administrator created a new user credential for the lava instance:

- http://lavabox:10080
The created user credentials are:

- Username: “demo”

- Token: “tokendemo”
The user would just have to run this command to add his credentials:

$ lava-tool auth-add http://demo@lavabox:10080/RPC2/
Paste token for http://demo@lavabox:10080/RPC2/: <Paste token: tokendemo>
Token added successfully for user demo.

In case you have problems with lava-tool saving tokens such as having to type a password.
You can edit the python keyring file to use plain text keyrings:

$ vi ~/.local/share/python_keyring/keyringrc.cfg
[backend]
default-keyring=keyring.backends.file.PlaintextKeyring

Submitting jobs to LAVA

The user can now use submit-jobs to submit any generated job to the lava instance.
Supposing that the myjob.yaml file previously generated is in the current path:

$ lava-tool submit-job http://demo@lavabox:10080/RPC2/ myjob.yaml
submitted as job: http://lavabox:10080/scheduler/job/16

https://validation.linaro.org/static/docs/v2/lava-tool.html
https://packages.debian.org/jessie-backports/lava-tool
http://lavabox/
http://demo@lavabox:10080/RPC2/
http://demo@lavabox:10080/RPC2/
http://demo@lavabox:10080/RPC2/

AGL test structure

The AGL tests are organised using a tree structure. The smallest block is called a
test case and specifies a single operation to be performed with a single result. Test cases
are grouped together in test sets. And tests sets are themselves grouped in test suites. The
test plans will contain one or more test suite (themselves containing sets and cases) in their
definition.

] 1
; |

! Test set Print to console; Constant " Animals measure ! i
1 1
1

:_'_'_'_'_'_'_'ff_'_'_'_'_'_'_':_"_'_'__'_'f__'_'_'_'_'_'_".f_'_'_'_'_ffff_'_l'_'_':f'f:-_:fff_'5fff_'_'__::_'_'_'_'I_'f_'_f_'_'ﬁ__f_'.:_'_'_'__'f_'_f_"_'_'_'f_'_'::

1

! T L i ¥ Sy, TRt St
| Test case | Display "Hello™ ; | Display "Bye" !

! futetoedlueteal roelooeiOueid

I

s W Ll et
| result = fail . gresult=pa.555 ! Any animals ? i | Any penguins 71 i

AGL Tests structure

Test plan

From the test job file described in [Test jobs] LAVA will parse and execute the test
plan. The test plan corresponds to the list of test definitions section:

- test:
definitions:
The test suite definition that will be parsed and executed goes here
- test:
definitions:
A second test suite
- test:
definitions:
A third test suite, all part of the same test plan

Test definition will be reported as test suites. The test suite will be executed in LAVA
Test Shells. The LAVA Test Shell, is based on the available shell for each platform. The set
of commands is extended with “lava-test-case” and “lava-test-set” to create test elements
from the test execution.

https://validation.linaro.org/static/docs/v2/lava_test_shell.html
https://validation.linaro.org/static/docs/v2/lava_test_shell.html

Reporting tests elements

In this section we will document the recommended solutions to report tests elements.

From lava test shells

To report test results within a lava shell environment just use the “lava-test-set” and
‘lava-test-case” commands.

From other scripts

Any test starts with the execution of a shell script which will run in a LAVA test shell
environment. The main test script can call other scripts. To report test results just print
“lava-test-set” or “lava-test-case” to the standard output. The main script will parse the
standard output looking for these markers and create elements for any marker found.

Test case

Mandatory fields

The lava-test-case takes two parameters: a name and a result.
The result must be passed using --result <RESULT_STATE>.
Available result states are: pass, fail, skip, unknown

Examples:
$ lava-test-case find-something --result pass
Or from python:
#!/usr/bin/env python
import os
os.system("lava-test-case %s --result pass" % "find-something")

Extra fields

Measurements and units can also be passed to a lava-test-case as extra arguments.
The test cases supports measurements and units per test at a precision of 10 digits. When
recording a test-case with measurement the unit parameter becomes mandatory.

Examples:
$lava-test-case any-animals --result pass --measurement 3 --units animals
$lava-test-case fast-copy --result fail --measurement 10 --units seconds

10

Test set

The lava-test-set should be used around lava-test-case.
To create a new test set use: $ lava-test-set start my-test-set
To stop a test set use: $ lava-test-set stop my-test-set

Example:
$ lava-test-set start my-test-set
$ lava-test-case find-something --result pass
$ lava-test-set stop my-test-set

Test suite

The test suite name is determined by the name parameter within the repository section of
the test definition.

Example:

- test:
definitions:
- repository: git://github.com/owner/agl-test-definitions.git
from: git
path: examples/custom-script.yaml
name: test-example-custom-script

The test suite name would be “test-example-custom-script”.

11

Test definition

- test:
timeout:
minutes: 2
definitions:

This section specifies the content of the test action section of a LAVA job. It
documents the mandatory fields for this section and the different methods to write test
definitions. The methods are documented in order from basic to advanced. Most advanced
solutions will also require stronger coding skills and more complicated environment setup.

Examples: local, inline test

The following code sample shows a basic test definition shipped with the tool as an example.

- test:
timeout:
minutes: 2
definitions:
- repository:
metadata:
format: Lava-Test Test Definition 1.0
name: inline-test
description: "Inline test to validate test framewrok health"
0s:
- debian
scope:
- functional
run:
steps:
- lava-test-set start set-pass
- lava-test-case always-pass --shell true
- lava-test-set stop set-pass
- lava-test-set start set-fail
- lava-test-case always-fail --shell false
- lava-test-set stop set-fail
from: inline
name: health-test
path: inline/health-test.yaml

<releng-scripts-folder>/templates/tests/health-test. jinja2

The test definition is contained in a “repository” section. Each test definition has it's
own “- repository” section.

The “metadata’ section contains metadata such as the test suite name, format and
description.

The “from” parameter defines that this test is an inline test, the test code is inlined
with the test definition. The “name” and “path” parameters are used to store the test
definition to a specific location for its future execution.

The “run” section is a list of steps to execute. As this test code is inlined, each step
will be executed sequentially within a lava test shell instance. More documentation about
these steps is provided in section: [Reporting tests elements].

12

With this method, the test definition is stored within the test generation tool. It is
useful for sharing tests definitions examples with the tool but it cannot be used for extensive
testing. The developers would have to suggest modifications to the tool’s repository for each
change in a test. Which would not be maintainable.

Basic: remote, inline test

The solution for test maintainability is to keep the test definition in an external git
repository. The test generation tool will only have the URL of the git repository to fetch the
definition.

The following code sample shows how to link to a remote test definition.

- test:
definitions:
- repository: https://git.automotivelinux.org/src/qa-testdefinitions
from: git
path: test-suites/short-smoke/smoke-tests-basic.yaml
name: smoke-tests-basic

<releng-scripts-folder>/templates/tests/smoke.jinja2

The test definition will be fetched at runtime from path within the given git repo (e.g.
examples/basic-inline.yaml):

metadata:
format: Lava-Test Test Definition 1.0
name: smoke-tests-basic
description: "Basic system test command for Linaro OpenEmbedded images"
maintainer:
- dave.pigott@linaro.org
os:
- openembedded
scope:
- functional

run:

- lava-test-case linux-linaro-openembedded-pwd --shell pwd

- lava-test-case linux-linaro-openembedded-uname --shell uname -a

- lava-test-case linux-linaro-openembedded-vmstat --shell vmstat

- lava-test-case linux-linaro-openembedded-ifconfig --shell ifconfig -a
- lava-test-case linux-linaro-openembedded-1lsusb --shell lsusb

<qa-testdefinitions-folder>/test-suites/short-smoke/smoke-tests-basic.yaml|

Using this method, the test is now remotely hosted allowing the owner to version and
modify it as he likes. But the test code is still inlined within the “run” section. The user is
limited in the range of tests he can write. And he must use shell commands only, each step
is interpreted as a LAVA-Test-Shell command.

13

https://git.automotivelinux.org/src/qa-testdefinitions/tree/test-suites/short-smoke/smoke-tests-basic.yaml

Extensive: remote, test scripts

The most extensive solution for writing tests is to use test scripts. The “run” section
will list calls to test shell scripts. These scripts will be executed in their own LAVA Test
Shells. From these scripts, the user has the freedom to use the coding language he likes,
and use his own test structure. He could call other scripts written in Python for example.

Test generation tool: Remote test definition

1
1
E minutes: 2

definitions:

i— repository: git://github. com/ocwner/'agl-test-definitions. git
from: git

| path: examples/custom-script.yami

i name: test-example-custom-script

<releng-scripts-folder>/templatesftesits/

Remote GIT repository: Test definition calling custom scripts

metadata:
name: metadataname-custom-script-test
format: "Lava-Test-Shell Test Definition 1.0"
—» description: "A test definition running a custom script.”
run:
steps:
- Jexamples/custom-scripts/my-test-script.sh

<remote-git-folder>/examples/icustom-scrpt. yami

Remote GIT repository: Custom script that can call other scripts

#l/binbash

Do whatever test you'd like
echo "Hello™

Call other scripts
—» /python_unittests. py

Report the test results

lava-test-set start constant
lava-test-case always-pass --result pass
lava-test-case always-fail --result fail
lava-test-set stop constant

<remote-git-folder>/examples/icustom-scripts/smoke-test-script. sh

The methodology to create these tests is documented in the following section: [Add new
tests to AGL CI Loop].

14

Add new tests to the AGL CI Loop

[Prerequisites]

Clone the releng-scripts repo:
$ git clone https://git.automotivelinux.org/AGL/releng-scripts/
Fork or clone the example test definitions repository: agl-test-definitions.

[STEP 1] Create a new test plan

Create a new test plan file within the ./templates/tests/ folder or releng-scripts.
This folder is the pool of available test plans for AGL:
$ touch <releng-scripts>/templates/tests/my-test-plan-name.jinja2

[STEP 2] Link to the test definitions within the releng-scripts tool

Link to the the remote test definition:
$ vim <releng-scripts>/templates/tests/my-test-plan-name.jinja2

- test:

timeout:
minutes: 2

definitions:

- repository: git://github.com/OWNER/agl-test-definitions.git
from: git
path: examples/my-test-definition.yaml
name: my-test-definition

[STEP 3] Create the test definition on the remote repository

Clone your fork of the AGL test definitions repository locally:

$ git clone https://github.com/OWNER/agl-test-definitions.git
Use the same architecture as defined in my-test-plan-name.jinja2 path to create the files.
Example:

$ cd <agl-test-definitions>

$ mkdir examples

$ touch ./examples/my-test-definition.yaml

$ vim ./examples/my-test-definition.yaml

metadata:
name: metadataname-my-test-definition
format: "Lava-Test-Shell Test Definition 1.0"
description: "A test definition running a custom script.”
run:
steps:
- ./examples/custom-scripts/my-test-script.sh

Other test definition available in agl-test-definition documentation: skeleton.yaml

15

https://git.automotivelinux.org/AGL/releng-scripts/
https://github.com/BayLibre/agl-test-definitions
https://git.automotivelinux.org/src/qa-testdefinitions/tree/doc/skeleton.yaml

[STEP 4] Create the tests scripts and write the tests

Use the same architecture as defined in my-test-definition.yaml path to create the files.
$ mkdir ./examples/custom-scripts
$ touch ./examples/custom-scripts/my-test-script.sh
$ vim ./examples/custom-scripts/my-test-script.sh

#!/bin/bash

Do whatever test you'd like
echo "Hello"

Call other scripts
python python_unittests.py

Report the test results

lava-test-set start constant
lava-test-case always-pass --result pass
lava-test-case always-fail --result fail
lava-test-set stop constant

Other test script example available in agl-test-definition documentation: skeleton.sh

[STEP 4 bis] Push the changes to the remote repo

Use git to add, commit and push your changes to your fork of the test definitions repository.
$ git add ./examples/my-test-definition.yaml
$ git add ./examples/custom-scripts/my-test-script.sh
$ git commit & git push

[STEP 5] Generate the test job

Now that the test has been fully written from the test definition to the test cases. You can

generate a new test job for LAVA using the generation tool:
$./utils/create-jobs.py m3ulcb -o myjob.yaml --test my-test-plan-name --callback
lab-baylibre-lavabox

Well done, your test job is now written in the “myjob.yaml” file. You can have a look at it to
make sure your test definition is correct.

[STEP 6] Submitting the test job to LAVA

To install and add authentication to LAVA please read this section: [Submit test jobs].
Once lava-tool is configured you can send your job definition to a LAVA instance using the

command:
$ lava-tool submit-job http://demo@lavabox:10080/RPC2/ myjob.yaml

submitted as job: http://lavabox:10080/scheduler/job/XX

16

https://git.automotivelinux.org/src/qa-testdefinitions/tree/doc/skeleton.sh

Further documentation on LAVA tests

The following list is links to the LAVA documentation for further documentation on tests.
e Lava doc for writing tests; link

Results in LAVA: test suite, set and case; link

The LAVA test Shell and “lava-test-case”; link

Best practices for writing LAVA test jobs; link

Test Action references; link

https://validation.linaro.org/static/docs/v2/developing-tests.html
https://validation.linaro.org/static/docs/v2/results-intro.html
https://validation.linaro.org/static/docs/v2/lava_test_shell.html
https://validation.linaro.org/static/docs/v2/writing-tests.html#best-practices-for-writing-a-lava-test-job
https://validation.linaro.org/static/docs/v2/actions-test.html

From LAVA to KernelCl

This section will briefly describe how the test results are submitted from LAVA to
KernelCl, parsed and saved. The client can then see these tests results using a web
interface. The following diagram is a revision of the one available in the Introduction section.

KernelCl
S] Test database and frontend
i Client 9
i AGL Team, developer, CILOOP, .. | sweb Interface)| sl |
i } +
KernelCl Backénd
REST AP |
| Database |
KCI auth-tc-kerr:l: est results:
L J +
I
LAVA Cl Tools * LAVA
Test plan generator Test execution and report
e

E Device Under Test
 (embedded platform)
1

AGL CI Architecture overview with Kernel Cl internals

The Kernel Cl block is expanded and we can find two internal blocks:
e KernelCl Frontend: a web server written in Python and Javascript; source code on
GitHub.
e KernelCl Backend: a database containing tests data and an API to interact with the
database implementing an authentication protocol; source code on GitHub.

18

https://github.com/kernelci/kernelci-frontend
https://github.com/kernelci/kernelci-backend

LAVA callback to KernelCl

Thanks to the notify section of LAVA, when a job is finished, the LAVA instance will
send the job results to a KernelCl instance.

notify:
criteria:
status: finished
callback:
url:
http://api.lavabox:8080/callback/lava/test?lab_name=lab-baylibre-lavabox&status={STATUS}
&status_string={STATUS_STRING}
method: POST
dataset: all
token: c5ec62a9-98ea-4acf-9e45-bdaaec44dbe2
content-type: json

Extract of a LAVA job definition: the notify section

Looking in detail at this section, it specifies all the needed information for LAVA to submit job
results:

e url: the KernelCl backend URL to send jobs to.

e token: the authentication token to communicate through the REST API

e content-type: the result packaging type: json.
Using theses information, LAVA will wait for the job to finish and then send a POST request
containing the job results to the specified KernelCl backend URL.

KernelCl callback event

The KernelCl backend instances are accessible through a REST API. This API is
exposed on a specific URL and port number. On the same URL, a documentation on how to
access the API is provided by default. The main KernelCl backend APl documentation is
available at this address: api.kernelci.org.

When Kernel Cl backend receives a callback event on the APl a serie of events
happens. kCI first validates that the authentication credentials are correct. On success, it
parses the received JSON job results. From this job results, database objects are created
and stored on the server’s database.

KernelCl frontend

The Kernel ClI frontend is a web interface. It provides a way for any user to visualize
test results stored in the KernelCl backend database. One of the instance of KernelCl
frontend containing test results is available at this address: kernelci.dev.baylibre.com.

Going to the test section the user is able to browse through the test results sorting by
board name, kernel version, ...

19

https://api.kernelci.org/
http://kernelci.dev.baylibre.com/

