/* * Copyright (C) 2015, 2016 "IoT.bzh" * Author "Romain Forlot" * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "diagnostic-manager.hpp" #include "../utils/openxc-utils.hpp" #include "../utils/signals.hpp" #include "../binding/configuration.hpp" #define MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ 10 #define MAX_SIMULTANEOUS_DIAG_REQUESTS 50 // There are only 8 slots of in flight diagnostic requests #define MAX_SIMULTANEOUS_IN_FLIGHT_REQUESTS 8 #define TIMERFD_ACCURACY 0 #define MICRO 1000000 diagnostic_manager_t::diagnostic_manager_t() : initialized_{false} {} /// @brief Diagnostic manager isn't initialized at launch but after /// CAN bus devices initialization. For the moment, it is only possible /// to have 1 diagnostic bus which are the first bus declared in the JSON /// description file. Configuration instance will return it. /// /// this will initialize DiagnosticShims and cancel all active requests /// if there are any. bool diagnostic_manager_t::initialize() { // Mandatory to set the bus before intialize shims. bus_ = configuration_t::instance().get_diagnostic_bus(); init_diagnostic_shims(); reset(); initialized_ = true; DEBUG(binder_interface, "%s: Diagnostic Manager initialized", __FUNCTION__); return initialized_; } /// @brief initialize shims used by UDS lib and set initialized_ to true. /// It is needed before used the diagnostic manager fully because shims are /// required by most member functions. void diagnostic_manager_t::init_diagnostic_shims() { shims_ = diagnostic_init_shims(shims_logger, shims_send, NULL); DEBUG(binder_interface, "%s: Shims initialized", __FUNCTION__); } /// @brief Force cleanup all active requests. void diagnostic_manager_t::reset() { DEBUG(binder_interface, "%s: Clearing existing diagnostic requests", __FUNCTION__); cleanup_active_requests(true); } /// @brief send function use by diagnostic library. Only one bus used for now /// so diagnostic request is sent using the default diagnostic bus not matter of /// which is specified in the diagnostic message definition. /// /// @param[in] arbitration_id - CAN arbitration ID to use when send message. OBD2 broadcast ID /// is 0x7DF by example. /// @param[in] data - The data payload for the message. NULL is valid if size is also 0. /// @param[in] size - The size of the data payload, in bytes. /// /// @return true if the CAN message was sent successfully. bool diagnostic_manager_t::shims_send(const uint32_t arbitration_id, const uint8_t* data, const uint8_t size) { std::shared_ptr can_bus_dev = can_bus_t::get_can_device(configuration_t::instance().get_diagnostic_manager().bus_); if(can_bus_dev != nullptr) return can_bus_dev->shims_send(arbitration_id, data, size); ERROR(binder_interface, "%s: Can not retrieve diagnostic bus: %s", __FUNCTION__, configuration_t::instance().get_diagnostic_manager().bus_.c_str()); return false; } /// @brief The type signature for an optional logging function, if the user /// wishes to provide one. It should print, store or otherwise display the /// message. /// /// message - A format string to log using the given parameters. /// ... (vargs) - the parameters for the format string. /// void diagnostic_manager_t::shims_logger(const char* format, ...) { va_list args; va_start(args, format); char buffer[256]; vsnprintf(buffer, 256, format, args); DEBUG(binder_interface, "%s: %s", __FUNCTION__, buffer); } /// @brief The type signature for a... OpenXC TODO: not used yet. void diagnostic_manager_t::shims_timer() {} std::shared_ptr diagnostic_manager_t::get_can_bus_dev() { return can_bus_t::get_can_device(bus_); } /// @brief Return diagnostic manager shims member. DiagnosticShims& diagnostic_manager_t::get_shims() { return shims_; } /// @brief Search for a specific active diagnostic request in the provided requests list /// and erase it from the vector. This is useful at unsubscription to clean up the list otherwize /// all received CAN messages will be passed to DiagnosticRequestHandle of all active diagnostic request /// contained in the vector but no event if connected to, so we will decode uneeded request. /// /// @param[in] entry - a pointer of an active_diagnostic_request instance to clean up /// @param[in] requests_list - a vector where to make the search and cleaning. void diagnostic_manager_t::find_and_erase(active_diagnostic_request_t* entry, std::vector& requests_list) { auto i = std::find(requests_list.begin(), requests_list.end(), entry); if ( i != requests_list.end()) requests_list.erase(i); } // @brief TODO: implement cancel_request if needed... Don't know. void diagnostic_manager_t::cancel_request(active_diagnostic_request_t* entry) { /* TODO: implement acceptance filters. if(entry.arbitration_id_ == OBD2_FUNCTIONAL_BROADCAST_ID) { for(uint32_t filter = OBD2_FUNCTIONAL_RESPONSE_START; filter < OBD2_FUNCTIONAL_RESPONSE_START + OBD2_FUNCTIONAL_RESPONSE_COUNT; filter++) { removeAcceptanceFilter(entry.bus_, filter, CanMessageFormat::STANDARD, getCanBuses(), getCanBusCount()); } } else { removeAcceptanceFilter(entry.bus_, entry.arbitration_id_ + DIAGNOSTIC_RESPONSE_ARBITRATION_ID_OFFSET, CanMessageFormat::STANDARD, getCanBuses(), getCanBusCount()); }*/ } /// @brief Cleanup a specific request if it isn't running and get complete. As it is almost /// impossible to get that state for a recurring request without waiting for that, you can /// force the cleaning operation. /// /// @param[in] entry - the request to clean /// @param[in] force - Force the cleaning or not ? void diagnostic_manager_t::cleanup_request(active_diagnostic_request_t* entry, bool force) { if((force || (entry != nullptr && entry->get_in_flight() && entry->request_completed()))) { entry->set_in_flight(false); char request_string[128] = {0}; diagnostic_request_to_string(&entry->get_handle()->request, request_string, sizeof(request_string)); if(force && entry->get_recurring()) { find_and_erase(entry, recurring_requests_); cancel_request(entry); DEBUG(binder_interface, "%s: Cancelling completed, recurring request: %s", __FUNCTION__, request_string); } else { DEBUG(binder_interface, "%s: Cancelling completed, non-recurring request: %s", __FUNCTION__, request_string); find_and_erase(entry, non_recurring_requests_); cancel_request(entry); } } } /// @brief Clean up all requests lists, recurring and not recurring. /// /// @param[in] force - Force the cleaning or not ? If true, that will do /// the same effect as a call to reset(). void diagnostic_manager_t::cleanup_active_requests(bool force) { for(auto& entry : non_recurring_requests_) if (entry != nullptr) cleanup_request(entry, force); for(auto& entry : recurring_requests_) if (entry != nullptr) cleanup_request(entry, force); } /// @brief Will return the active_diagnostic_request_t pointer for theDiagnosticRequest or nullptr if /// not found. /// /// @param[in] request - Search key, method will go through recurring list to see if it find that request /// holded by the DiagnosticHandle member. active_diagnostic_request_t* diagnostic_manager_t::find_recurring_request(const DiagnosticRequest* request) { for (auto& entry : recurring_requests_) { if(entry != nullptr) { if(diagnostic_request_equals(&entry->get_handle()->request, request)) { return entry; break; } } } return nullptr; } /// @brief Add and send a new one-time diagnostic request. /// /// A one-time (aka non-recurring) request can existing in parallel with a /// recurring request for the same PID or mode, that's not a problem. /// /// For an example, see the docs for addRecurringRequest. This function is very /// similar but leaves out the frequencyHz parameter. /// /// @param[in] request - The parameters for the request. /// @param[in] name - Human readable name this response, to be used when /// publishing received responses. TODO: If the name is NULL, the published output /// will use the raw OBD-II response format. /// @param[in] wait_for_multiple_responses - If false, When any response is received /// for this request it will be removed from the active list. If true, the /// request will remain active until the timeout clock expires, to allow it /// to receive multiple response. Functional broadcast requests will always /// waint for the timeout, regardless of this parameter. /// @param[in] decoder - An optional DiagnosticResponseDecoder to parse the payload of /// responses to this request. If the decoder is NULL, the output will /// include the raw payload instead of a parsed value. /// @param[in] callback - An optional DiagnosticResponseCallback to be notified whenever a /// response is received for this request. /// /// @return true if the request was added successfully. Returns false if there /// wasn't a free active request entry, if the frequency was too high or if the /// CAN acceptance filters could not be configured, bool diagnostic_manager_t::add_request(DiagnosticRequest* request, const std::string name, bool wait_for_multiple_responses, const DiagnosticResponseDecoder decoder, const DiagnosticResponseCallback callback) { cleanup_active_requests(false); bool added = true; if (non_recurring_requests_.size() <= MAX_SIMULTANEOUS_DIAG_REQUESTS) { // TODO: implement Acceptance Filter // if(updateRequiredAcceptanceFilters(bus, request)) { active_diagnostic_request_t* entry = new active_diagnostic_request_t(bus_, request, name, wait_for_multiple_responses, decoder, callback, 0); entry->set_handle(shims_, request); char request_string[128] = {0}; diagnostic_request_to_string(&entry->get_handle()->request, request_string, sizeof(request_string)); find_and_erase(entry, non_recurring_requests_); DEBUG(binder_interface, "%s: Added one-time diagnostic request on bus %s: %s", __FUNCTION__, bus_.c_str(), request_string); non_recurring_requests_.push_back(entry); } else { WARNING(binder_interface, "%s: There isn't enough request entry. Vector exhausted %d/%d", __FUNCTION__, (int)non_recurring_requests_.size(), MAX_SIMULTANEOUS_DIAG_REQUESTS); non_recurring_requests_.resize(MAX_SIMULTANEOUS_DIAG_REQUESTS); added = false; } return added; } bool diagnostic_manager_t::validate_optional_request_attributes(float frequencyHz) { if(frequencyHz > MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ) { DEBUG(binder_interface, "%s: Requested recurring diagnostic frequency %lf is higher than maximum of %d", __FUNCTION__, frequencyHz, MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ); return false; } return true; } /// @brief Add and send a new recurring diagnostic request. /// /// At most one recurring request can be active for the same arbitration ID, mode /// and (if set) PID on the same bus at one time. If you try and call /// addRecurringRequest with the same key, it will return an error. /// /// TODO: This also adds any neccessary CAN acceptance filters so we can receive the /// response. If the request is to the functional broadcast ID (0x7df) filters /// are added for all functional addresses (0x7e8 to 0x7f0). /// /// Example: /// /// // Creating a functional broadcast, mode 1 request for PID 2. /// DiagnosticRequest request = { /// arbitration_id: 0x7df, /// mode: 1, /// has_pid: true, /// pid: 2 /// }; /// /// // Add a recurring request, to be sent at 1Hz, and published with the /// // name "my_pid_request" /// addRecurringRequest(&getConfiguration()->diagnosticsManager, /// canBus, /// &request, /// "my_pid_request", /// false, /// NULL, /// NULL, /// 1); /// /// @param[in] request - The parameters for the request. /// @param[in] name - An optional human readable name this response, to be used when /// publishing received responses. If the name is NULL, the published output /// will use the raw OBD-II response format. /// @param[in] wait_for_multiple_responses - If false, When any response is received /// for this request it will be removed from the active list. If true, the /// request will remain active until the timeout clock expires, to allow it /// to receive multiple response. Functional broadcast requests will always /// waint for the timeout, regardless of this parameter. /// @param[in] decoder - An optional DiagnosticResponseDecoder to parse the payload of /// responses to this request. If the decoder is NULL, the output will /// include the raw payload instead of a parsed value. /// @param[in] callback - An optional DiagnosticResponseCallback to be notified whenever a /// response is received for this request. /// @param[in] frequencyHz - The frequency (in Hz) to send the request. A frequency above /// MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ is not allowed, and will make this /// function return false. /// /// @return true if the request was added successfully. Returns false if there /// was too much already running requests, if the frequency was too high TODO:or if the /// CAN acceptance filters could not be configured, /// bool diagnostic_manager_t::add_recurring_request(DiagnosticRequest* request, const char* name, bool wait_for_multiple_responses, const DiagnosticResponseDecoder decoder, const DiagnosticResponseCallback callback, float frequencyHz) { if(!validate_optional_request_attributes(frequencyHz)) return false; cleanup_active_requests(false); bool added = true; if(find_recurring_request(request) == nullptr) { if(recurring_requests_.size() <= MAX_SIMULTANEOUS_DIAG_REQUESTS) { sd_event_source *source; // TODO: implement Acceptance Filter //if(updateRequiredAcceptanceFilters(bus, request)) { active_diagnostic_request_t* entry = new active_diagnostic_request_t(bus_, request, name, wait_for_multiple_responses, decoder, callback, frequencyHz); entry->set_handle(shims_, request); uint64_t usec; sd_event_now(afb_daemon_get_event_loop(binder_interface->daemon), CLOCK_BOOTTIME, &usec); if(recurring_requests_.size() > 0) { DEBUG(binder_interface, "%s: Added 100ms to usec to stagger sending requests", __FUNCTION__); usec += 100000; } DEBUG(binder_interface, "%s: Added recurring diagnostic request (freq: %f) on bus %s at %ld. Event loop state: %d", __FUNCTION__, frequencyHz, bus_.c_str(), usec, sd_event_get_state(afb_daemon_get_event_loop(binder_interface->daemon))); if(sd_event_add_time(afb_daemon_get_event_loop(binder_interface->daemon), &source, CLOCK_BOOTTIME, usec, TIMERFD_ACCURACY, send_request, request) < 0) { ERROR(binder_interface, "%s: Request fails to be schedule through event loop", __FUNCTION__); added = false; } recurring_requests_.push_back(entry); } else { WARNING(binder_interface, "%s: There isn't enough request entry. Vector exhausted %d/%d", __FUNCTION__, (int)recurring_requests_.size(), MAX_SIMULTANEOUS_DIAG_REQUESTS); recurring_requests_.resize(MAX_SIMULTANEOUS_DIAG_REQUESTS); added = false; } } else { DEBUG(binder_interface, "%s: Can't add request, one already exists with same key", __FUNCTION__); added = false; } return added; } /// @brief Returns true if there are two active requests running for the same arbitration ID. bool diagnostic_manager_t::conflicting(active_diagnostic_request_t* request, active_diagnostic_request_t* candidate) const { return (candidate->get_in_flight() && candidate != request && candidate->get_can_bus_dev() == request->get_can_bus_dev() && candidate->get_id() == request->get_id()); } /// @brief Returns true if there are no other active requests to the same arbitration ID /// and if there aren't more than 8 requests in flight at the same time. bool diagnostic_manager_t::clear_to_send(active_diagnostic_request_t* request) const { int total_in_flight = 0; for ( auto entry : non_recurring_requests_) { if(conflicting(request, entry)) return false; if(entry->get_in_flight()) total_in_flight++; } for ( auto entry : recurring_requests_) { if(conflicting(request, entry)) return false; if(entry->get_in_flight()) total_in_flight++; } if(total_in_flight > MAX_SIMULTANEOUS_IN_FLIGHT_REQUESTS) return false; return true; } int diagnostic_manager_t::reschedule_request(sd_event_source *s, uint64_t usec, active_diagnostic_request_t* adr) { usec = usec + (uint64_t)(adr->get_frequency_clock().frequency_to_period()); DEBUG(binder_interface, "%s: Event loop state: %d. usec: %ld", __FUNCTION__, sd_event_get_state(afb_daemon_get_event_loop(binder_interface->daemon)), usec); if(sd_event_source_set_time(s, usec) >= 0) if(sd_event_source_set_enabled(s, SD_EVENT_ON) >= 0) return 0; sd_event_source_unref(s); return -1; } /// @brief Systemd timer event callback use to send CAN messages at regular interval. Depending /// on the diagnostic message frequency. /// /// This should be called from systemd binder event loop and the event is created on add_recurring_request /// /// @param[in] s - Systemd event source pointer used to reschedule the new iteration. /// @param[in] usec - previous call timestamp in microseconds. /// @param[in] userdata - the DiagnosticRequest struct, use to retrieve the active request from the list. /// /// @return positive integer if sent and rescheduled or negative value if something wrong. If an error occurs /// event will be disabled. int diagnostic_manager_t::send_request(sd_event_source *s, uint64_t usec, void *userdata) { diagnostic_manager_t& dm = configuration_t::instance().get_diagnostic_manager(); DiagnosticRequest* request = (DiagnosticRequest*)userdata; active_diagnostic_request_t* adr = dm.find_recurring_request(request); dm.cleanup_active_requests(false); if(adr != nullptr && adr->get_can_bus_dev() == dm.get_can_bus_dev() && adr->should_send() && dm.clear_to_send(adr)) { adr->get_frequency_clock().tick(); start_diagnostic_request(&dm.shims_, adr->get_handle()); if(adr->get_handle()->completed && !adr->get_handle()->success) { ERROR(binder_interface, "%s: Fatal error sending diagnostic request", __FUNCTION__); sd_event_source_unref(s); return -1; } adr->get_timeout_clock().tick(); adr->set_in_flight(true); } if(adr != nullptr && adr->get_recurring()) { return dm.reschedule_request(s, usec, adr); } sd_event_source_unref(s); NOTICE(binder_interface, "%s: Request doesn't exist anymore. Canceling.'", __FUNCTION__); return -2; } /// @brief Will decode the diagnostic response and build the final openxc_VehicleMessage to return. /// /// @param[in] adr - A pointer to an active diagnostic request holding a valid diagnostic handle /// @param[in] response - The response to decode from which the Vehicle message will be built and returned /// /// @return A filled openxc_VehicleMessage or a zeroed struct if there is an error. openxc_VehicleMessage diagnostic_manager_t::relay_diagnostic_response(active_diagnostic_request_t* adr, const DiagnosticResponse& response) { openxc_VehicleMessage message = build_VehicleMessage(); float value = (float)diagnostic_payload_to_integer(&response); if(adr->get_decoder() != nullptr) { value = adr->get_decoder()(&response, value); } if((response.success && strnlen(adr->get_name().c_str(), adr->get_name().size())) > 0) { // If name, include 'value' instead of payload, and leave of response // details. message = build_VehicleMessage(build_SimpleMessage(adr->get_name(), build_DynamicField(value))); } else { // If no name, send full details of response but still include 'value' // instead of 'payload' if they provided a decoder. The one case you // can't get is the full detailed response with 'value'. We could add // another parameter for that but it's onerous to carry that around. message = build_VehicleMessage(adr, response, value); } // If not success but completed then the pid isn't supported if(!response.success) { struct utils::signals_found found_signals; found_signals = utils::signals_manager_t::instance().find_signals(build_DynamicField(adr->get_name())); found_signals.diagnostic_messages.front()->set_supported(false); cleanup_request(adr, true); NOTICE(binder_interface, "%s: PID not supported or ill formed. Please unsubscribe from it. Error code : %d", __FUNCTION__, response.negative_response_code); message = build_VehicleMessage(build_SimpleMessage(adr->get_name(), build_DynamicField("This PID isn't supported by your vehicle."))); } if(adr->get_callback() != nullptr) { adr->get_callback()(adr, &response, value); } return message; } /// @brief Will take the CAN message and pass it to the receive functions that will process /// diagnostic handle for each active diagnostic request then depending on the result we will /// return pass the diagnostic response to decode it. /// /// @param[in] entry - A pointer to an active diagnostic request holding a valid diagnostic handle /// @param[in] cm - A raw CAN message. /// /// @return A pointer to a filled openxc_VehicleMessage or a nullptr if nothing has been found. openxc_VehicleMessage diagnostic_manager_t::relay_diagnostic_handle(active_diagnostic_request_t* entry, const can_message_t& cm) { DiagnosticResponse response = diagnostic_receive_can_frame(&shims_, entry->get_handle(), cm.get_id(), cm.get_data(), cm.get_length()); if(response.completed && entry->get_handle()->completed) { if(entry->get_handle()->success) return relay_diagnostic_response(entry, response); } else if(!response.completed && response.multi_frame) { // Reset the timeout clock while completing the multi-frame receive entry->get_timeout_clock().tick(); } return build_VehicleMessage(); } /// @brief Find the active diagnostic request with the correct DiagnosticRequestHandle /// member that will understand the CAN message using diagnostic_receive_can_frame function /// from UDS-C library. Then decode it with an ad-hoc method. /// /// @param[in] cm - Raw CAN message received /// /// @return VehicleMessage with decoded value. openxc_VehicleMessage diagnostic_manager_t::find_and_decode_adr(const can_message_t& cm) { openxc_VehicleMessage vehicle_message = build_VehicleMessage(); for ( auto entry : non_recurring_requests_) { vehicle_message = relay_diagnostic_handle(entry, cm); if (is_valid(vehicle_message)) return vehicle_message; } for ( auto entry : recurring_requests_) { vehicle_message = relay_diagnostic_handle(entry, cm); if (is_valid(vehicle_message)) return vehicle_message; } return vehicle_message; } /// @brief Tell if the CAN message received is a diagnostic response. /// Request broadcast ID use 0x7DF and assigned ID goes from 0x7E0 to Ox7E7. That allows up to 8 ECU to respond /// at the same time. The response is the assigned ID + 0x8, so response ID can goes from 0x7E8 to 0x7EF. /// /// @param[in] cm - CAN message received from the socket. /// /// @return True if the active diagnostic request match the response. bool diagnostic_manager_t::is_diagnostic_response(const can_message_t& cm) { if (cm.get_id() >= 0x7e8 && cm.get_id() <= 0x7ef) return true; return false; }