/* * Copyright (C) 2015, 2016 "IoT.bzh" * Author "Romain Forlot" * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include "can-bus.hpp" #include "can-signals.hpp" #include "can-decoder.hpp" #include "../configuration.hpp" #include "../utils/signals.hpp" #include "../utils/openxc-utils.hpp" extern "C" { #include } /// @brief Class constructor /// /// @param[in] conf_file - handle to the json configuration file. can_bus_t::can_bus_t(utils::config_parser_t conf_file) : conf_file_{conf_file} {} std::map> can_bus_t::can_devices_; /// @brief Listen for all device sockets and fill can_messages_queue with them. /// Reading blocks until message arrive on listened sockets. /// /// @return 0 if ok -1 if not int can_bus_t::can_reader() { fd_set rfds; int sock_max = INVALID_SOCKET; FD_ZERO(&rfds); for(auto& can_dev : can_devices_) { FD_SET(can_dev.second->get_socket().socket(), &rfds); if (sock_max < can_dev.second->get_socket().socket()) sock_max = can_dev.second->get_socket().socket(); } int ret; while(is_reading_) { ret = select(sock_max + 1, &rfds, nullptr, nullptr, nullptr); if(ret == -1) perror("select()"); else if(ret > 0) { for(const auto& s: can_devices_) { if(FD_ISSET(s.second->get_socket().socket(), &rfds)) { can_message_t msg; s.second->get_socket() >> msg; std::lock_guard can_message_lock(get_can_message_mutex()); { push_new_can_message(msg); } get_new_can_message_cv().notify_one(); } } } else printf("Timeout\n"); } return 0; } /// @brief Will make the decoding operation on a classic CAN message. It will not /// handle CAN commands nor diagnostic messages that have their own method to get /// this happens. /// /// It will add to the vehicle_message queue the decoded message and tell the event push /// thread to process it. /// /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode. /// /// @return How many signals has been decoded. int can_bus_t::process_can_signals(can_message_t& can_message) { int processed_signals = 0; struct utils::signals_found signals; openxc_DynamicField search_key, decoded_message; openxc_VehicleMessage vehicle_message; configuration_t& conf = configuration_t::instance(); utils::signals_manager_t& sm = utils::signals_manager_t::instance(); // First we have to found which can_signal_t it is search_key = build_DynamicField((double)can_message.get_id()); signals = sm.find_signals(search_key); // Decoding the message ! Don't kill the messenger ! for(auto& sig : signals.can_signals) { std::lock_guard subscribed_signals_lock(sm.get_subscribed_signals_mutex()); std::map& s = sm.get_subscribed_signals(); // DEBUG message to make easier debugger STL containers... //DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name])); //DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)])); //DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name)); //DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name)); if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()])) { bool send = true; decoded_message = decoder_t::translateSignal(*sig, can_message, conf.get_can_signals(), &send); if(send) { openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message); vehicle_message = build_VehicleMessage(s_message); std::lock_guard decoded_can_message_lock(decoded_can_message_mutex_); push_new_vehicle_message(vehicle_message); } processed_signals++; } } DEBUG(binder_interface, "%s: %d/%d CAN signals processed.", __FUNCTION__, processed_signals, (int)signals.can_signals.size()); return processed_signals; } /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying /// the event push thread to process it. /// /// @param[in] manager - the diagnostic manager object that handle diagnostic communication /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode. /// /// @return How many signals has been decoded. int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message) { int processed_signals = 0; utils::signals_manager_t& sm = utils::signals_manager_t::instance(); std::lock_guard subscribed_signals_lock(sm.get_subscribed_signals_mutex()); std::map& s = sm.get_subscribed_signals(); openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message); if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) && (s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name]))) { std::lock_guard decoded_can_message_lock(decoded_can_message_mutex_); push_new_vehicle_message(vehicle_message); processed_signals++; } return processed_signals; } /// @brief thread to decoding raw CAN messages. /// /// Depending on the nature of message, if arbitration ID matches ID for a diagnostic response /// then decoding a diagnostic message else use classic CAN signals decoding functions. /// /// It will take from the can_message_q_ queue the next can message to process then it search /// about signal subscribed if there is a valid afb_event for it. We only decode signal for which a /// subscription has been made. Can message will be decoded using translateSignal that will pass it to the /// corresponding decoding function if there is one assigned for that signal. If not, it will be the default /// noopDecoder function that will operate on it. /// /// TODO: make diagnostic messages parsing optionnal. void can_bus_t::can_decode_message() { can_message_t can_message; while(is_decoding_) { { std::unique_lock can_message_lock(can_message_mutex_); new_can_message_cv_.wait(can_message_lock); while(!can_message_q_.empty()) { can_message = next_can_message(); if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message)) process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message); else process_can_signals(can_message); } } new_decoded_can_message_.notify_one(); } } /// @brief thread to push events to suscribers. It will read subscribed_signals map to look /// which are events that has to be pushed. void can_bus_t::can_event_push() { openxc_VehicleMessage v_message; openxc_SimpleMessage s_message; json_object* jo; utils::signals_manager_t& sm = utils::signals_manager_t::instance(); while(is_pushing_) { std::unique_lock decoded_can_message_lock(decoded_can_message_mutex_); new_decoded_can_message_.wait(decoded_can_message_lock); while(!vehicle_message_q_.empty()) { v_message = next_vehicle_message(); s_message = get_simple_message(v_message); { std::lock_guard subscribed_signals_lock(sm.get_subscribed_signals_mutex()); std::map& s = sm.get_subscribed_signals(); if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)])) { jo = json_object_new_object(); jsonify_simple(s_message, jo); if(afb_event_push(s[std::string(s_message.name)], jo) == 0) on_no_clients(std::string(s_message.name)); } } } } } /// @brief Will initialize threads that will decode /// and push subscribed events. void can_bus_t::start_threads() { is_reading_ = true; th_reading_ = std::thread(&can_bus_t::can_reader, this); if(!th_reading_.joinable()) is_reading_ = false; is_decoding_ = true; th_decoding_ = std::thread(&can_bus_t::can_decode_message, this); if(!th_decoding_.joinable()) is_decoding_ = false; is_pushing_ = true; th_pushing_ = std::thread(&can_bus_t::can_event_push, this); if(!th_pushing_.joinable()) is_pushing_ = false; } /// @brief Will stop all threads holded by can_bus_t object /// which are decoding and pushing then will wait that's /// they'll finish their job. void can_bus_t::stop_threads() { is_reading_ = false; is_decoding_ = false; is_pushing_ = false; } /// @brief Will initialize can_bus_dev_t objects after reading /// the configuration file passed in the constructor. All CAN buses /// Initialized here will be added to a vector holding them for /// inventory and later access. /// /// That will initialize CAN socket reading too using a new thread. /// /// @return 0 if ok, other if not. int can_bus_t::init_can_dev() { std::vector devices_name; int i = 0; size_t t; if(conf_file_.check_conf()) { devices_name = conf_file_.get_devices_name(); if (! devices_name.empty()) { t = devices_name.size(); for(const auto& device : devices_name) { can_bus_t::can_devices_[device] = std::make_shared(device, i); if (can_bus_t::can_devices_[device]->open() >= 0) { can_bus_t::can_devices_[device]->configure(); DEBUG(binder_interface, "%s: Start reading thread", __FUNCTION__); NOTICE(binder_interface, "%s: %s device opened and reading", __FUNCTION__, device.c_str()); //can_bus_t::can_devices_[device]->start_reading(*this); i++; } else { ERROR(binder_interface, "%s: Can't open device %s", __FUNCTION__, device.c_str()); return 1; } } NOTICE(binder_interface, "%s: Initialized %d/%d can bus device(s)", __FUNCTION__, i, (int)t); return 0; } ERROR(binder_interface, "%s: Error at CAN device initialization. No devices read from configuration file", __FUNCTION__); return 1; } ERROR(binder_interface, "%s: Can't read INI configuration file", __FUNCTION__); return 2; } /// @brief return new_can_message_cv_ member /// /// @return return new_can_message_cv_ member std::condition_variable& can_bus_t::get_new_can_message_cv() { return new_can_message_cv_; } /// @brief return can_message_mutex_ member /// /// @return return can_message_mutex_ member std::mutex& can_bus_t::get_can_message_mutex() { return can_message_mutex_; } /// @brief Return first can_message_t on the queue /// /// @return a can_message_t can_message_t can_bus_t::next_can_message() { can_message_t can_msg; if(!can_message_q_.empty()) { can_msg = can_message_q_.front(); can_message_q_.pop(); DEBUG(binder_interface, "%s: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", __FUNCTION__, can_msg.get_id(), can_msg.get_length(), can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]); return can_msg; } return can_msg; } /// @brief Push a can_message_t into the queue /// /// @param[in] can_msg - the const reference can_message_t object to push into the queue void can_bus_t::push_new_can_message(const can_message_t& can_msg) { can_message_q_.push(can_msg); } /// @brief Return first openxc_VehicleMessage on the queue /// /// @return a openxc_VehicleMessage containing a decoded can message openxc_VehicleMessage can_bus_t::next_vehicle_message() { openxc_VehicleMessage v_msg; if(! vehicle_message_q_.empty()) { v_msg = vehicle_message_q_.front(); vehicle_message_q_.pop(); DEBUG(binder_interface, "%s: next vehicle message poped", __FUNCTION__); return v_msg; } return v_msg; } /// @brief Push a openxc_VehicleMessage into the queue /// /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg) { vehicle_message_q_.push(v_msg); } /// @brief Create a RX_SETUP receive job for the BCM socket of a CAN signal. /// /// @return 0 if ok -1 if not. int can_bus_t::create_rx_filter(const can_signal_t& s) { const std::string& bus = s.get_message().get_bus_name(); return can_bus_t::can_devices_[bus]->create_rx_filter(s); } /// @brief Return a map with the can_bus_dev_t initialized /// /// @return map can_bus_dev_m_ map const std::map>& can_bus_t::get_can_devices() const { return can_bus_t::can_devices_; } /// @brief Return the shared pointer on the can_bus_dev_t initialized /// with device_name "bus" /// /// @param[in] bus - CAN bus device name to retrieve. /// /// @return A shared pointer on an object can_bus_dev_t std::shared_ptr can_bus_t::get_can_device(std::string bus) { return can_bus_t::can_devices_[bus]; }