#include #include #include #include #include #include #include #include #define ARBITRATION_ID_OFFSET 0x8 #define MODE_RESPONSE_OFFSET 0x40 #define NEGATIVE_RESPONSE_MODE 0x7f #define MAX_DIAGNOSTIC_PAYLOAD_SIZE 6 #define MODE_BYTE_INDEX 0 #define PID_BYTE_INDEX 1 #define NEGATIVE_RESPONSE_MODE_INDEX 1 #define NEGATIVE_RESPONSE_NRC_INDEX 2 #ifndef MAX #define MAX(x, y) (((x) > (y)) ? (x) : (y)) #endif DiagnosticShims diagnostic_init_shims(LogShim log, SendCanMessageShim send_can_message, SetTimerShim set_timer) { DiagnosticShims shims = { log: log, send_can_message: send_can_message, set_timer: set_timer }; return shims; } static void setup_receive_handle(DiagnosticRequestHandle* handle) { if(handle->request.arbitration_id == OBD2_FUNCTIONAL_BROADCAST_ID) { uint32_t response_id; for(response_id = 0; response_id < OBD2_FUNCTIONAL_RESPONSE_COUNT; ++response_id) { handle->isotp_receive_handles[response_id] = isotp_receive( &handle->isotp_shims, OBD2_FUNCTIONAL_RESPONSE_START + response_id, NULL); } handle->isotp_receive_handle_count = OBD2_FUNCTIONAL_RESPONSE_COUNT; } else { handle->isotp_receive_handle_count = 1; handle->isotp_receive_handles[0] = isotp_receive(&handle->isotp_shims, handle->request.arbitration_id + ARBITRATION_ID_OFFSET, NULL); } } static uint16_t autoset_pid_length(uint8_t mode, uint16_t pid, uint8_t pid_length) { if(pid_length == 0) { if(mode <= 0xa || mode == 0x3e ) { pid_length = 1; } else if(pid > 0xffff || ((pid & 0xFF00) > 0x0)) { pid_length = 2; } else { pid_length = 1; } } return pid_length; } static void send_diagnostic_request(DiagnosticShims* shims, DiagnosticRequestHandle* handle) { uint8_t payload[MAX_DIAGNOSTIC_PAYLOAD_SIZE] = {0}; payload[MODE_BYTE_INDEX] = handle->request.mode; if(handle->request.has_pid) { handle->request.pid_length = autoset_pid_length(handle->request.mode, handle->request.pid, handle->request.pid_length); set_bitfield(handle->request.pid, PID_BYTE_INDEX * CHAR_BIT, handle->request.pid_length * CHAR_BIT, payload, sizeof(payload)); } if(handle->request.payload_length > 0) { memcpy(&payload[PID_BYTE_INDEX + handle->request.pid_length], handle->request.payload, handle->request.payload_length); } handle->isotp_send_handle = isotp_send(&handle->isotp_shims, handle->request.arbitration_id, payload, 1 + handle->request.payload_length + handle->request.pid_length, NULL); if(handle->isotp_send_handle.completed && !handle->isotp_send_handle.success) { handle->completed = true; handle->success = false; if(shims->log != NULL) { shims->log("%s", "Diagnostic request not sent"); } } else if(shims->log != NULL) { char request_string[128] = {0}; diagnostic_request_to_string(&handle->request, request_string, sizeof(request_string)); shims->log("Sending diagnostic request: %s", request_string); } } bool diagnostic_request_sent(DiagnosticRequestHandle* handle) { return handle->isotp_send_handle.completed; } void start_diagnostic_request(DiagnosticShims* shims, DiagnosticRequestHandle* handle) { handle->success = false; handle->completed = false; send_diagnostic_request(shims, handle); if(!handle->completed) { setup_receive_handle(handle); } } DiagnosticRequestHandle generate_diagnostic_request(DiagnosticShims* shims, DiagnosticRequest* request, DiagnosticResponseReceived callback) { DiagnosticRequestHandle handle = { request: *request, callback: callback, success: false, completed: false }; handle.isotp_shims = isotp_init_shims(shims->log, shims->send_can_message, shims->set_timer); handle.isotp_shims.frame_padding = !request->no_frame_padding; return handle; // TODO notes on multi frame: // TODO what are the timers for exactly? // // when sending multi frame, send 1 frame, wait for a response // if it says send all, send all right away // if it says flow control, set the time for the next send // instead of creating a timer with an async callback, add a process_handle // function that's called repeatedly in the main loop - if it's time to // send, we do it. so there's a process_handle_send and receive_can_frame // that are just called continuously from the main loop. it's a waste of a // few cpu cycles but it may be more natural than callbacks. // // what would a timer callback look like...it would need to pass the handle // and that's all. seems like a context void* would be able to capture all // of the information but arg, memory allocation. look at how it's done in // the other library again // } DiagnosticRequestHandle diagnostic_request(DiagnosticShims* shims, DiagnosticRequest* request, DiagnosticResponseReceived callback) { DiagnosticRequestHandle handle = generate_diagnostic_request( shims, request, callback); start_diagnostic_request(shims, &handle); return handle; } DiagnosticRequestHandle diagnostic_request_pid(DiagnosticShims* shims, DiagnosticPidRequestType pid_request_type, uint32_t arbitration_id, uint16_t pid, DiagnosticResponseReceived callback) { DiagnosticRequest request = { arbitration_id: arbitration_id, mode: pid_request_type == DIAGNOSTIC_STANDARD_PID ? 0x1 : 0x22, has_pid: true, pid: pid }; return diagnostic_request(shims, &request, callback); } static bool handle_negative_response(IsoTpMessage* message, DiagnosticResponse* response, DiagnosticShims* shims) { bool response_was_negative = false; if(response->mode == NEGATIVE_RESPONSE_MODE) { response_was_negative = true; if(message->size > NEGATIVE_RESPONSE_MODE_INDEX) { response->mode = message->payload[NEGATIVE_RESPONSE_MODE_INDEX]; } if(message->size > NEGATIVE_RESPONSE_NRC_INDEX) { response->negative_response_code = message->payload[NEGATIVE_RESPONSE_NRC_INDEX]; } response->success = false; response->completed = true; } return response_was_negative; } static bool handle_positive_response(DiagnosticRequestHandle* handle, IsoTpMessage* message, DiagnosticResponse* response, DiagnosticShims* shims) { bool response_was_positive = false; if(response->mode == handle->request.mode + MODE_RESPONSE_OFFSET) { response_was_positive = true; // hide the "response" version of the mode from the user // if it matched response->mode = handle->request.mode; response->has_pid = false; if(handle->request.has_pid && message->size > 1) { response->has_pid = true; if(handle->request.pid_length == 2) { response->pid = get_bitfield(message->payload, message->size, PID_BYTE_INDEX * CHAR_BIT, sizeof(uint16_t) * CHAR_BIT); } else { response->pid = message->payload[PID_BYTE_INDEX]; } } if((!handle->request.has_pid && !response->has_pid) || response->pid == handle->request.pid) { response->success = true; response->completed = true; uint8_t payload_index = 1 + handle->request.pid_length; response->payload_length = MAX(0, message->size - payload_index); if(response->payload_length > 0) { memcpy(response->payload, &message->payload[payload_index], response->payload_length); } } else { response_was_positive = false; } } return response_was_positive; } DiagnosticResponse diagnostic_receive_can_frame(DiagnosticShims* shims, DiagnosticRequestHandle* handle, const uint32_t arbitration_id, const uint8_t data[], const uint8_t size) { DiagnosticResponse response = { arbitration_id: arbitration_id, multi_frame: false, success: false, completed: false }; if(!handle->isotp_send_handle.completed) { isotp_continue_send(&handle->isotp_shims, &handle->isotp_send_handle, arbitration_id, data, size); } else { uint8_t i; for(i = 0; i < handle->isotp_receive_handle_count; ++i) { IsoTpMessage message = isotp_continue_receive(&handle->isotp_shims, &handle->isotp_receive_handles[i], arbitration_id, data, size); response.multi_frame = message.multi_frame; if(message.completed) { if(message.size > 0) { response.mode = message.payload[0]; if(handle_negative_response(&message, &response, shims) || handle_positive_response(handle, &message, &response, shims)) { if(shims->log != NULL) { char response_string[128] = {0}; diagnostic_response_to_string(&response, response_string, sizeof(response_string)); shims->log("Diagnostic response received: %s", response_string); } handle->success = true; handle->completed = true; } } else { if(shims->log != NULL) { shims->log("Received an empty response on arb ID 0x%x", response.arbitration_id); } } if(handle->completed && handle->callback != NULL) { handle->callback(&response); } break; } } } return response; } int diagnostic_payload_to_integer(const DiagnosticResponse* response) { return get_bitfield(response->payload, response->payload_length, 0, response->payload_length * CHAR_BIT); } float diagnostic_decode_obd2_pid(const DiagnosticResponse* response) { // handles on the single number values, not the bit encoded ones switch(response->pid) { case 0xa: return response->payload[0] * 3; case 0xc: return (response->payload[0] * 256 + response->payload[1]) / 4.0; case 0xd: case 0x33: case 0xb: return response->payload[0]; case 0x10: return (response->payload[0] * 256 + response->payload[1]) / 100.0; case 0x11: case 0x2f: case 0x45: case 0x4c: case 0x52: case 0x5a: case 0x4: return response->payload[0] * 100.0 / 255.0; case 0x46: case 0x5c: case 0xf: case 0x5: return response->payload[0] - 40; case 0x62: return response->payload[0] - 125; default: return diagnostic_payload_to_integer(response); } } void diagnostic_response_to_string(const DiagnosticResponse* response, char* destination, size_t destination_length) { int bytes_used = snprintf(destination, destination_length, "arb_id: 0x%lx, mode: 0x%x, ", (unsigned long) response->arbitration_id, response->mode); if(response->has_pid) { bytes_used += snprintf(destination + bytes_used, destination_length - bytes_used, "pid: 0x%x, ", response->pid); } if(!response->success) { bytes_used += snprintf(destination + bytes_used, destination_length - bytes_used, "nrc: 0x%x, ", response->negative_response_code); } if(response->payload_length > 0) { snprintf(destination + bytes_used, destination_length - bytes_used, "payload: 0x%02x%02x%02x%02x%02x%02x%02x", response->payload[0], response->payload[1], response->payload[2], response->payload[3], response->payload[4], response->payload[5], response->payload[6]); } else { snprintf(destination + bytes_used, destination_length - bytes_used, "no payload"); } } void diagnostic_request_to_string(const DiagnosticRequest* request, char* destination, size_t destination_length) { int bytes_used = snprintf(destination, destination_length, "arb_id: 0x%lx, mode: 0x%x, ", (unsigned long) request->arbitration_id, request->mode); if(request->has_pid) { bytes_used += snprintf(destination + bytes_used, destination_length - bytes_used, "pid: 0x%x, ", request->pid); } int remaining_space = destination_length - bytes_used; if(request->payload_length > 0) { snprintf(destination + bytes_used, remaining_space, "payload: 0x%02x%02x%02x%02x%02x%02x%02x", request->payload[0], request->payload[1], request->payload[2], request->payload[3], request->payload[4], request->payload[5], request->payload[6]); } else { snprintf(destination + bytes_used, remaining_space, "no payload"); } } bool diagnostic_request_equals(const DiagnosticRequest* ours, const DiagnosticRequest* theirs) { bool equals = ours->arbitration_id == theirs->arbitration_id && ours->mode == theirs->mode; equals &= ours->has_pid == theirs->has_pid; equals &= ours->pid == theirs->pid; return equals; }