Finalization of decoding part of diagnostic messages.
[apps/agl-service-can-low-level.git] / src / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <map>
19 #include <cerrno>
20 #include <vector>
21 #include <string>
22 #include <fcntl.h>
23 #include <unistd.h>
24 #include <net/if.h>
25 #include <sys/ioctl.h>
26 #include <sys/socket.h>
27 #include <json-c/json.h>
28 #include <linux/can/raw.h>
29
30 #include "can-bus.hpp"
31
32 #include "can-decoder.hpp"
33 #include "../configuration.hpp"
34 #include "../utils/signals.hpp"
35 #include "../utils/openxc-utils.hpp"
36
37 extern "C"
38 {
39         #include <afb/afb-binding.h>
40 }
41
42 /**
43 * @brief Class constructor
44 *
45 * @param struct afb_binding_interface *interface between daemon and binding
46 * @param int file handle to the json configuration file.
47 */
48 can_bus_t::can_bus_t(int conf_file)
49         : conf_file_{conf_file}
50 {
51 }
52
53 std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;
54
55 /**
56  * @brief Will make the decoding operation on a classic CAN message. It will not
57  * handle CAN commands nor diagnostic messages that have their own method to get
58  * this happens.
59  *
60  * It will add to the vehicle_message queue the decoded message and tell the event push
61  * thread to process it.
62  *
63  * @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
64  *
65  * @return How many signals has been decoded.
66  */
67 int can_bus_t::process_can_signals(can_message_t& can_message)
68 {
69         int processed_signals = 0;
70         std::vector <can_signal_t*> signals;
71         openxc_DynamicField search_key, decoded_message;
72         openxc_VehicleMessage vehicle_message;
73
74         /* First we have to found which can_signal_t it is */
75         search_key = build_DynamicField((double)can_message.get_id());
76         signals.clear();
77         configuration_t::instance().find_can_signals(search_key, signals);
78
79         /* Decoding the message ! Don't kill the messenger ! */
80         for(auto& sig : signals)
81         {
82                 std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
83                 std::map<std::string, struct afb_event>& s = get_subscribed_signals();
84
85                 /* DEBUG message to make easier debugger STL containers...
86                 DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
87                 DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
88                 DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
89                 DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name)));*/
90                 if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
91                 {
92                         decoded_message = decoder_t::translateSignal(*sig, can_message, configuration_t::instance().get_can_signals());
93
94                         openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_generic_name(), decoded_message);
95                         vehicle_message = build_VehicleMessage(s_message);
96
97                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
98                         push_new_vehicle_message(vehicle_message);
99                         new_decoded_can_message_.notify_one();
100                         processed_signals++;
101                 }
102         }
103
104         DEBUG(binder_interface, "process_can_signals: %d/%d CAN signals processed.", processed_signals, (int)signals.size());
105         return processed_signals;
106 }
107
108 /**
109  * @brief Will make the decoding operation on a diagnostic CAN message.It will add to
110  * the vehicle_message queue the decoded message and tell the event push thread to process it.
111  *
112  * @param[in] entry - an active_diagnostic_request_t object that made the request
113  * about that diagnostic CAN message.
114  * @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
115  *
116  * @return How many signals has been decoded.
117  */
118 int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
119 {
120         int processed_signals = 0;
121
122         std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
123         std::map<std::string, struct afb_event>& s = get_subscribed_signals();
124
125         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
126         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
127                 (s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
128         {
129                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
130                 push_new_vehicle_message(vehicle_message);
131                 new_decoded_can_message_.notify_one();
132                 processed_signals++;
133         }
134
135         return processed_signals;
136 }
137
138 /**
139 * @brief thread to decoding raw CAN messages.
140 *
141 * @desc It will take from the can_message_q_ queue the next can message to process then it will search
142 *  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
143 *  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
144 *  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
145 *  noopDecoder function that will operate on it.
146 *
147 *  Depending on the nature of message, if id match a diagnostic request corresponding id for a response
148 *  then decoding a diagnostic message else use classic CAN signals decoding functions.
149 *
150 *  TODO: make diagnostic messages parsing optionnal.
151 */
152 void can_bus_t::can_decode_message()
153 {
154         can_message_t can_message;
155
156         while(is_decoding_)
157         {
158                 std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
159                 new_can_message_cv_.wait(can_message_lock);
160                 can_message = next_can_message();
161
162                 if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
163                         process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
164                 else
165                         process_can_signals(can_message);
166         }
167 }
168
169 /**
170 * @brief thread to push events to suscribers. It will read subscribed_signals map to look
171 * which are events that has to be pushed.
172 */
173 void can_bus_t::can_event_push()
174 {
175         openxc_VehicleMessage v_message;
176         openxc_SimpleMessage s_message;
177         json_object* jo;
178
179         while(is_pushing_)
180         {
181                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
182                 new_decoded_can_message_.wait(decoded_can_message_lock);
183                 v_message = next_vehicle_message();
184
185                 s_message = get_simple_message(v_message);
186                 {
187                         std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
188                         std::map<std::string, struct afb_event>& s = get_subscribed_signals();
189                         if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
190                         {
191                                 jo = json_object_new_object();
192                                 jsonify_simple(s_message, jo);
193                                 afb_event_push(s[std::string(s_message.name)], jo);
194                         }
195                 }
196         }
197 }
198
199 /**
200 * @brief Will initialize threads that will decode
201 *  and push subscribed events.
202 */
203 void can_bus_t::start_threads()
204 {
205         is_decoding_ = true;
206         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
207         if(!th_decoding_.joinable())
208                 is_decoding_ = false;
209
210         is_pushing_ = true;
211         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
212         if(!th_pushing_.joinable())
213                 is_pushing_ = false;
214 }
215
216 /**
217 * @brief Will stop all threads holded by can_bus_t object
218 *  which are decoding and pushing then will wait that's
219 * they'll finish their job.
220 */
221 void can_bus_t::stop_threads()
222 {
223         is_decoding_ = false;
224         is_pushing_ = false;
225 }
226
227 /**
228 * @brief Will initialize can_bus_dev_t objects after reading
229 * the configuration file passed in the constructor. All CAN buses
230 * Initialized here will be added to a vector holding them for
231 * inventory and later access.
232 *
233 * That will initialize CAN socket reading too using a new thread.
234 */
235 int can_bus_t::init_can_dev()
236 {
237         std::vector<std::string> devices_name;
238         int i = 0;
239         size_t t;
240
241         devices_name = read_conf();
242
243         if (! devices_name.empty())
244         {
245                 t = devices_name.size();
246
247                 for(const auto& device : devices_name)
248                 {
249                         can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
250                         if (can_bus_t::can_devices_[device]->open() == 0)
251                         {
252                                 DEBUG(binder_interface, "Start reading thread");
253                                 NOTICE(binder_interface, "%s device opened and reading", device.c_str());
254                                 can_bus_t::can_devices_[device]->start_reading(*this);
255                                 i++;
256                         }
257                         else
258                                 ERROR(binder_interface, "Can't open device %s", device.c_str());
259                 }
260
261                 NOTICE(binder_interface, "Initialized %d/%d can bus device(s)", i, t);
262                 return 0;
263         }
264         ERROR(binder_interface, "init_can_dev: Error at CAN device initialization. No devices read from configuration file. Did you specify canbus JSON object ?");
265         return 1;
266 }
267
268 /**
269 * @brief read the conf_file_ and will parse json objects
270 * in it searching for canbus objects devices name.
271 *
272 * @return Vector of can bus device name string.
273 */
274 std::vector<std::string> can_bus_t::read_conf()
275 {
276         std::vector<std::string> ret;
277         json_object *jo, *canbus;
278         int n, i;
279         const char* taxi;
280
281         FILE *fd = fdopen(conf_file_, "r");
282         if (fd)
283         {
284                 std::string fd_conf_content;
285                 std::fseek(fd, 0, SEEK_END);
286                 fd_conf_content.resize(std::ftell(fd));
287                 std::rewind(fd);
288                 std::fread(&fd_conf_content[0], 1, fd_conf_content.size(), fd);
289                 std::fclose(fd);
290
291                 DEBUG(binder_interface, "Configuration file content : %s", fd_conf_content.c_str());
292                 jo = json_tokener_parse(fd_conf_content.c_str());
293
294                 if (jo == NULL || !json_object_object_get_ex(jo, "canbus", &canbus))
295                 {
296                         ERROR(binder_interface, "Can't find canbus node in the configuration file. Please review it.");
297                         ret.clear();
298                 }
299                 else if (json_object_get_type(canbus) != json_type_array)
300                 {
301                         taxi = json_object_get_string(canbus);
302                         DEBUG(binder_interface, "Can bus found: %s", taxi);
303                         ret.push_back(std::string(taxi));
304                 }
305                 else
306                 {
307                         n = json_object_array_length(canbus);
308                         for (i = 0 ; i < n ; i++)
309                                 ret.push_back(json_object_get_string(json_object_array_get_idx(canbus, i)));
310                 }
311                 return ret;
312         }
313         ERROR(binder_interface, "Problem at reading the conf file");
314         ret.clear();
315         return ret;
316 }
317
318 /**
319 * @brief return new_can_message_cv_ member
320 *
321 * @return  return new_can_message_cv_ member
322 */
323 std::condition_variable& can_bus_t::get_new_can_message_cv()
324 {
325         return new_can_message_cv_;
326 }
327
328 /**
329 * @brief return can_message_mutex_ member
330 *
331 * @return  return can_message_mutex_ member
332 */
333 std::mutex& can_bus_t::get_can_message_mutex()
334 {
335         return can_message_mutex_;
336 }
337
338 /**
339 * @brief Return first can_message_t on the queue
340 *
341 * @return a can_message_t
342 */
343 can_message_t can_bus_t::next_can_message()
344 {
345         can_message_t can_msg;
346
347         if(!can_message_q_.empty())
348         {
349                 can_msg = can_message_q_.front();
350                 can_message_q_.pop();
351                 DEBUG(binder_interface, "next_can_message: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", can_msg.get_id(), can_msg.get_length(),
352                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
353                 return can_msg;
354         }
355
356         return can_msg;
357 }
358
359 /**
360 * @brief Push a can_message_t into the queue
361 *
362 * @param the const reference can_message_t object to push into the queue
363 */
364 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
365 {
366         can_message_q_.push(can_msg);
367 }
368
369 /**
370 * @brief Return first openxc_VehicleMessage on the queue
371 *
372 * @return a openxc_VehicleMessage containing a decoded can message
373 */
374 openxc_VehicleMessage can_bus_t::next_vehicle_message()
375 {
376         openxc_VehicleMessage v_msg;
377
378         if(! vehicle_message_q_.empty())
379         {
380                 v_msg = vehicle_message_q_.front();
381                 vehicle_message_q_.pop();
382                 DEBUG(binder_interface, "next_vehicle_message: next vehicle message poped");
383                 return v_msg;
384         }
385
386         return v_msg;
387 }
388
389 /**
390 * @brief Push a openxc_VehicleMessage into the queue
391 *
392 * @param the const reference openxc_VehicleMessage object to push into the queue
393 */
394 void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
395 {
396         vehicle_message_q_.push(v_msg);
397 }
398
399 /**
400 * @brief Return a map with the can_bus_dev_t initialized
401 *
402 * @return map can_bus_dev_m_ map
403 */
404 const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
405 {
406         return can_bus_t::can_devices_;
407 }
408
409 /**
410 * @brief Return the shared pointer on the can_bus_dev_t initialized 
411 * with device_name "bus"
412 *
413 * @param[in] bus - CAN bus device name to retrieve.
414 *
415 * @return A shared pointer on an object can_bus_dev_t
416 */
417 std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
418 {
419         return can_bus_t::can_devices_[bus];
420 }