Revert accessing CAN device with a map indexing on dev name
[apps/low-level-can-service.git] / src / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <map>
19 #include <cerrno>
20 #include <vector>
21 #include <string>
22 #include <fcntl.h>
23 #include <unistd.h>
24 #include <net/if.h>
25 #include <sys/ioctl.h>
26 #include <sys/socket.h>
27 #include <json-c/json.h>
28 #include <linux/can/raw.h>
29
30 #include "can-bus.hpp"
31
32 #include "can-decoder.hpp"
33 #include "../configuration.hpp"
34 #include "../utils/signals.hpp"
35 #include "../utils/openxc-utils.hpp"
36
37 extern "C"
38 {
39         #include <afb/afb-binding.h>
40 }
41
42 /**
43 * @brief Class constructor
44 *
45 * @param struct afb_binding_interface *interface between daemon and binding
46 * @param int file handle to the json configuration file.
47 */
48 can_bus_t::can_bus_t(int conf_file)
49         : conf_file_{conf_file}
50 {
51 }
52
53 std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;
54
55 /**
56  * @brief Will make the decoding operation on a classic CAN message. It will not
57  * handle CAN commands nor diagnostic messages that have their own method to get
58  * this happens.
59  *
60  * It will add to the vehicle_message queue the decoded message and tell the event push
61  * thread to process it.
62  *
63  * @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
64  *
65  * @return How many signals has been decoded.
66  */
67 int can_bus_t::process_can_signals(can_message_t& can_message)
68 {
69         int processed_signals = 0;
70         std::vector <can_signal_t*> signals;
71         openxc_DynamicField search_key, decoded_message;
72         openxc_VehicleMessage vehicle_message;
73
74         /* First we have to found which can_signal_t it is */
75         search_key = build_DynamicField((double)can_message.get_id());
76         signals.clear();
77         configuration_t::instance().find_can_signals(search_key, signals);
78
79         /* Decoding the message ! Don't kill the messenger ! */
80         for(auto& sig : signals)
81         {
82                 std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
83                 std::map<std::string, struct afb_event>& s = get_subscribed_signals();
84
85                 /* DEBUG message to make easier debugger STL containers...
86                 DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
87                 DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
88                 DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
89                 DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name)));*/
90                 if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
91                 {
92                         decoded_message = decoder_t::translateSignal(*sig, can_message, configuration_t::instance().get_can_signals());
93
94                         openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_generic_name(), decoded_message);
95                         vehicle_message = build_VehicleMessage(s_message);
96
97                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
98                         push_new_vehicle_message(vehicle_message);
99                         new_decoded_can_message_.notify_one();
100                         processed_signals++;
101                 }
102         }
103
104         DEBUG(binder_interface, "process_can_signals: %d/%d CAN signals processed.", processed_signals, (int)signals.size());
105         return processed_signals;
106 }
107
108 /**
109  * @brief Will make the decoding operation on a diagnostic CAN message.It will add to
110  * the vehicle_message queue the decoded message and tell the event push thread to process it.
111  *
112  * @param[in] entry - an active_diagnostic_request_t object that made the request
113  * about that diagnostic CAN message.
114  * @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
115  *
116  * @return How many signals has been decoded.
117  */
118 int can_bus_t::process_diagnostic_signals(active_diagnostic_request_t* entry, const can_message_t& can_message)
119 {
120         int processed_signals = 0;
121         openxc_VehicleMessage vehicle_message;
122
123         diagnostic_manager_t& manager = configuration_t::instance().get_diagnostic_manager();
124
125         std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
126         std::map<std::string, struct afb_event>& s = get_subscribed_signals();
127
128         if( s.find(entry->get_name()) != s.end() && afb_event_is_valid(s[entry->get_name()]))
129         {
130                 if(manager.get_can_bus_dev() == entry->get_can_bus_dev() && entry->get_in_flight())
131                 {
132                         DiagnosticResponse response = diagnostic_receive_can_frame(
133                                         // TODO: openXC todo task: eek, is bus address and array index this tightly coupled?
134                                         &manager.get_shims(),
135                                         entry->get_handle(), can_message.get_id(), can_message.get_data(), can_message.get_length());
136                         if(response.completed && entry->get_handle()->completed)
137                         {
138                                 if(entry->get_handle()->success)
139                                 {
140                                         vehicle_message = manager.relay_diagnostic_response(entry, response);
141                                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
142                                         push_new_vehicle_message(vehicle_message);
143                                         new_decoded_can_message_.notify_one();
144                                         processed_signals++;
145                                 }
146                                 else
147                                         DEBUG(binder_interface, "process_diagnostic_signals: Fatal error sending or receiving diagnostic request");
148                         }
149                         else if(!response.completed && response.multi_frame)
150                                 // Reset the timeout clock while completing the multi-frame receive
151                                 entry->get_timeout_clock().tick();
152                 }
153         }
154
155         return processed_signals;
156 }
157
158 /**
159 * @brief thread to decoding raw CAN messages.
160 *
161 * @desc It will take from the can_message_q_ queue the next can message to process then it will search
162 *  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
163 *  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
164 *  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
165 *  noopDecoder function that will operate on it.
166 *
167 *  Depending on the nature of message, if id match a diagnostic request corresponding id for a response
168 *  then decoding a diagnostic message else use classic CAN signals decoding functions.
169 *
170 *  TODO: make diagnostic messages parsing optionnal.
171 */
172 void can_bus_t::can_decode_message()
173 {
174         can_message_t can_message;
175
176         while(is_decoding_)
177         {
178                 std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
179                 new_can_message_cv_.wait(can_message_lock);
180                 can_message = next_can_message();
181
182                 active_diagnostic_request_t* adr = configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message);
183                 if(adr != nullptr)
184                         process_diagnostic_signals(adr, can_message);
185                 else
186                         process_can_signals(can_message);
187         }
188 }
189
190 /**
191 * @brief thread to push events to suscribers. It will read subscribed_signals map to look
192 * which are events that has to be pushed.
193 */
194 void can_bus_t::can_event_push()
195 {
196         openxc_VehicleMessage v_message;
197         openxc_SimpleMessage s_message;
198         json_object* jo;
199
200         while(is_pushing_)
201         {
202                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
203                 new_decoded_can_message_.wait(decoded_can_message_lock);
204                 v_message = next_vehicle_message();
205
206                 s_message = get_simple_message(v_message);
207                 {
208                         std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
209                         std::map<std::string, struct afb_event>& s = get_subscribed_signals();
210                         if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
211                         {
212                                 jo = json_object_new_object();
213                                 jsonify_simple(s_message, jo);
214                                 afb_event_push(s[std::string(s_message.name)], jo);
215                         }
216                 }
217         }
218 }
219
220 /**
221 * @brief Will initialize threads that will decode
222 *  and push subscribed events.
223 */
224 void can_bus_t::start_threads()
225 {
226         is_decoding_ = true;
227         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
228         if(!th_decoding_.joinable())
229                 is_decoding_ = false;
230
231         is_pushing_ = true;
232         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
233         if(!th_pushing_.joinable())
234                 is_pushing_ = false;
235 }
236
237 /**
238 * @brief Will stop all threads holded by can_bus_t object
239 *  which are decoding and pushing then will wait that's
240 * they'll finish their job.
241 */
242 void can_bus_t::stop_threads()
243 {
244         is_decoding_ = false;
245         is_pushing_ = false;
246 }
247
248 /**
249 * @brief Will initialize can_bus_dev_t objects after reading
250 * the configuration file passed in the constructor. All CAN buses
251 * Initialized here will be added to a vector holding them for
252 * inventory and later access.
253 *
254 * That will initialize CAN socket reading too using a new thread.
255 */
256 int can_bus_t::init_can_dev()
257 {
258         std::vector<std::string> devices_name;
259         int i = 0;
260         size_t t;
261
262         devices_name = read_conf();
263
264         if (! devices_name.empty())
265         {
266                 t = devices_name.size();
267
268                 for(const auto& device : devices_name)
269                 {
270                         can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
271                         if (can_bus_t::can_devices_[device]->open() == 0)
272                         {
273                                 DEBUG(binder_interface, "Start reading thread");
274                                 NOTICE(binder_interface, "%s device opened and reading", device.c_str());
275                                 can_bus_t::can_devices_[device]->start_reading(*this);
276                                 i++;
277                         }
278                         else
279                                 ERROR(binder_interface, "Can't open device %s", device.c_str());
280                 }
281
282                 NOTICE(binder_interface, "Initialized %d/%d can bus device(s)", i, t);
283                 return 0;
284         }
285         ERROR(binder_interface, "init_can_dev: Error at CAN device initialization. No devices read from configuration file. Did you specify canbus JSON object ?");
286         return 1;
287 }
288
289 /**
290 * @brief read the conf_file_ and will parse json objects
291 * in it searching for canbus objects devices name.
292 *
293 * @return Vector of can bus device name string.
294 */
295 std::vector<std::string> can_bus_t::read_conf()
296 {
297         std::vector<std::string> ret;
298         json_object *jo, *canbus;
299         int n, i;
300         const char* taxi;
301
302         FILE *fd = fdopen(conf_file_, "r");
303         if (fd)
304         {
305                 std::string fd_conf_content;
306                 std::fseek(fd, 0, SEEK_END);
307                 fd_conf_content.resize(std::ftell(fd));
308                 std::rewind(fd);
309                 std::fread(&fd_conf_content[0], 1, fd_conf_content.size(), fd);
310                 std::fclose(fd);
311
312                 DEBUG(binder_interface, "Configuration file content : %s", fd_conf_content.c_str());
313                 jo = json_tokener_parse(fd_conf_content.c_str());
314
315                 if (jo == NULL || !json_object_object_get_ex(jo, "canbus", &canbus))
316                 {
317                         ERROR(binder_interface, "Can't find canbus node in the configuration file. Please review it.");
318                         ret.clear();
319                 }
320                 else if (json_object_get_type(canbus) != json_type_array)
321                 {
322                         taxi = json_object_get_string(canbus);
323                         DEBUG(binder_interface, "Can bus found: %s", taxi);
324                         ret.push_back(std::string(taxi));
325                 }
326                 else
327                 {
328                         n = json_object_array_length(canbus);
329                         for (i = 0 ; i < n ; i++)
330                                 ret.push_back(json_object_get_string(json_object_array_get_idx(canbus, i)));
331                 }
332                 return ret;
333         }
334         ERROR(binder_interface, "Problem at reading the conf file");
335         ret.clear();
336         return ret;
337 }
338
339 /**
340 * @brief return new_can_message_cv_ member
341 *
342 * @return  return new_can_message_cv_ member
343 */
344 std::condition_variable& can_bus_t::get_new_can_message_cv()
345 {
346         return new_can_message_cv_;
347 }
348
349 /**
350 * @brief return can_message_mutex_ member
351 *
352 * @return  return can_message_mutex_ member
353 */
354 std::mutex& can_bus_t::get_can_message_mutex()
355 {
356         return can_message_mutex_;
357 }
358
359 /**
360 * @brief Return first can_message_t on the queue
361 *
362 * @return a can_message_t
363 */
364 can_message_t can_bus_t::next_can_message()
365 {
366         can_message_t can_msg;
367
368         if(!can_message_q_.empty())
369         {
370                 can_msg = can_message_q_.front();
371                 can_message_q_.pop();
372                 DEBUG(binder_interface, "next_can_message: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", can_msg.get_id(), can_msg.get_length(),
373                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
374                 return can_msg;
375         }
376
377         return can_msg;
378 }
379
380 /**
381 * @brief Push a can_message_t into the queue
382 *
383 * @param the const reference can_message_t object to push into the queue
384 */
385 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
386 {
387         can_message_q_.push(can_msg);
388 }
389
390 /**
391 * @brief Return first openxc_VehicleMessage on the queue
392 *
393 * @return a openxc_VehicleMessage containing a decoded can message
394 */
395 openxc_VehicleMessage can_bus_t::next_vehicle_message()
396 {
397         openxc_VehicleMessage v_msg;
398
399         if(! vehicle_message_q_.empty())
400         {
401                 v_msg = vehicle_message_q_.front();
402                 vehicle_message_q_.pop();
403                 DEBUG(binder_interface, "next_vehicle_message: next vehicle message poped");
404                 return v_msg;
405         }
406
407         return v_msg;
408 }
409
410 /**
411 * @brief Push a openxc_VehicleMessage into the queue
412 *
413 * @param the const reference openxc_VehicleMessage object to push into the queue
414 */
415 void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
416 {
417         vehicle_message_q_.push(v_msg);
418 }
419
420 /**
421 * @brief Return a map with the can_bus_dev_t initialized
422 *
423 * @return map can_bus_dev_m_ map
424 */
425 const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
426 {
427         return can_bus_t::can_devices_;
428 }
429
430 /**
431 * @brief Return the shared pointer on the can_bus_dev_t initialized 
432 * with device_name "bus"
433 *
434 * @param[in] bus - CAN bus device name to retrieve.
435 *
436 * @return A shared pointer on an object can_bus_dev_t
437 */
438 std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
439 {
440         return can_bus_t::can_devices_[bus];
441 }