Littles comments improvments
[apps/low-level-can-service.git] / src / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <map>
19 #include <cerrno>
20 #include <vector>
21 #include <string>
22 #include <fcntl.h>
23 #include <unistd.h>
24 #include <net/if.h>
25 #include <sys/ioctl.h>
26 #include <sys/socket.h>
27 #include <json-c/json.h>
28 #include <linux/can/raw.h>
29
30 #include "can-bus.hpp"
31
32 #include "can-decoder.hpp"
33 #include "../configuration.hpp"
34 #include "../utils/signals.hpp"
35 #include "../utils/openxc-utils.hpp"
36
37 extern "C"
38 {
39         #include <afb/afb-binding.h>
40 }
41
42 /**
43 * @brief Class constructor
44 *
45 * @param struct afb_binding_interface *interface between daemon and binding
46 * @param int file handle to the json configuration file.
47 */
48 can_bus_t::can_bus_t(int conf_file)
49         : conf_file_{conf_file}
50 {
51 }
52
53 /**
54  * @brief Will make the decoding operation on a classic CAN message. It will not
55  * handle CAN commands nor diagnostic messages that have their own method to get
56  * this happens.
57  *
58  * It will add to the vehicle_message queue the decoded message and tell the event push
59  * thread to process it.
60  *
61  * @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
62  *
63  * @return How many signals has been decoded.
64  */
65 int can_bus_t::process_can_signals(can_message_t& can_message)
66 {
67         int processed_signals = 0;
68         std::vector <can_signal_t*> signals;
69         openxc_DynamicField search_key, decoded_message;
70         openxc_VehicleMessage vehicle_message;
71
72         /* First we have to found which can_signal_t it is */
73         search_key = build_DynamicField((double)can_message.get_id());
74         signals.clear();
75         configuration_t::instance().find_can_signals(search_key, signals);
76
77         /* Decoding the message ! Don't kill the messenger ! */
78         for(auto& sig : signals)
79         {
80                 std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
81                 std::map<std::string, struct afb_event>& s = get_subscribed_signals();
82
83                 /* DEBUG message to make easier debugger STL containers...
84                 DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
85                 DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
86                 DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
87                 DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name)));*/
88                 if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
89                 {
90                         decoded_message = decoder_t::translateSignal(*sig, can_message, configuration_t::instance().get_can_signals());
91
92                         openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_generic_name(), decoded_message);
93                         vehicle_message = build_VehicleMessage(s_message);
94
95                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
96                         push_new_vehicle_message(vehicle_message);
97                         new_decoded_can_message_.notify_one();
98                         processed_signals++;
99                 }
100         }
101
102         DEBUG(binder_interface, "process_can_signals: %d/%d CAN signals processed.", processed_signals, (int)signals.size());
103         return processed_signals;
104 }
105
106 /**
107  * @brief Will make the decoding operation on a diagnostic CAN message.It will add to
108  * the vehicle_message queue the decoded message and tell the event push thread to process it.
109  *
110  * @param[in] entry - an active_diagnostic_request_t object that made the request
111  * about that diagnostic CAN message.
112  * @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
113  *
114  * @return How many signals has been decoded.
115  */
116 int can_bus_t::process_diagnostic_signals(active_diagnostic_request_t* entry, const can_message_t& can_message)
117 {
118         int processed_signals = 0;
119         openxc_VehicleMessage vehicle_message;
120
121         diagnostic_manager_t& manager = configuration_t::instance().get_diagnostic_manager();
122
123         std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
124         std::map<std::string, struct afb_event>& s = get_subscribed_signals();
125
126         if( s.find(entry->get_name()) != s.end() && afb_event_is_valid(s[entry->get_name()]))
127         {
128                 if(manager.get_can_bus_dev() == entry->get_can_bus_dev() && entry->get_in_flight())
129                 {
130                         DiagnosticResponse response = diagnostic_receive_can_frame(
131                                         // TODO: openXC todo task: eek, is bus address and array index this tightly coupled?
132                                         &manager.get_shims(),
133                                         entry->get_handle(), can_message.get_id(), can_message.get_data(), can_message.get_length());
134                         if(response.completed && entry->get_handle()->completed)
135                         {
136                                 if(entry->get_handle()->success)
137                                 {
138                                         vehicle_message = manager.relay_diagnostic_response(entry, response);
139                                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
140                                         push_new_vehicle_message(vehicle_message);
141                                         new_decoded_can_message_.notify_one();
142                                         processed_signals++;
143                                 }
144                                 else
145                                         DEBUG(binder_interface, "process_diagnostic_signals: Fatal error sending or receiving diagnostic request");
146                         }
147                         else if(!response.completed && response.multi_frame)
148                                 // Reset the timeout clock while completing the multi-frame receive
149                                 entry->get_timeout_clock().tick();
150                 }
151         }
152
153         return processed_signals;
154 }
155
156 /**
157 * @brief thread to decoding raw CAN messages.
158 *
159 * @desc It will take from the can_message_q_ queue the next can message to process then it will search
160 *  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
161 *  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
162 *  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
163 *  noopDecoder function that will operate on it.
164 *
165 *  Depending on the nature of message, if id match a diagnostic request corresponding id for a response
166 *  then decoding a diagnostic message else use classic CAN signals decoding functions.
167 *
168 *  TODO: make diagnostic messages parsing optionnal.
169 */
170 void can_bus_t::can_decode_message()
171 {
172         can_message_t can_message;
173
174         while(is_decoding_)
175         {
176                 std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
177                 new_can_message_cv_.wait(can_message_lock);
178                 can_message = next_can_message();
179
180                 active_diagnostic_request_t* adr = configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message);
181                 if(adr != nullptr)
182                         process_diagnostic_signals(adr, can_message);
183                 else
184                         process_can_signals(can_message);
185         }
186 }
187
188 /**
189 * @brief thread to push events to suscribers. It will read subscribed_signals map to look
190 * which are events that has to be pushed.
191 */
192 void can_bus_t::can_event_push()
193 {
194         openxc_VehicleMessage v_message;
195         openxc_SimpleMessage s_message;
196         json_object* jo;
197
198         while(is_pushing_)
199         {
200                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
201                 new_decoded_can_message_.wait(decoded_can_message_lock);
202                 v_message = next_vehicle_message();
203
204                 s_message = get_simple_message(v_message);
205                 {
206                         std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
207                         std::map<std::string, struct afb_event>& s = get_subscribed_signals();
208                         if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
209                         {
210                                 jo = json_object_new_object();
211                                 jsonify_simple(s_message, jo);
212                                 afb_event_push(s[std::string(s_message.name)], jo);
213                         }
214                 }
215         }
216 }
217
218 /**
219 * @brief Will initialize threads that will decode
220 *  and push subscribed events.
221 */
222 void can_bus_t::start_threads()
223 {
224         is_decoding_ = true;
225         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
226         if(!th_decoding_.joinable())
227                 is_decoding_ = false;
228
229         is_pushing_ = true;
230         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
231         if(!th_pushing_.joinable())
232                 is_pushing_ = false;
233 }
234
235 /**
236 * @brief Will stop all threads holded by can_bus_t object
237 *  which are decoding and pushing then will wait that's
238 * they'll finish their job.
239 */
240 void can_bus_t::stop_threads()
241 {
242         is_decoding_ = false;
243         is_pushing_ = false;
244 }
245
246 /**
247 * @brief Will initialize can_bus_dev_t objects after reading
248 * the configuration file passed in the constructor. All CAN buses
249 * Initialized here will be added to a vector holding them for
250 * inventory and later access.
251 *
252 * That will initialize CAN socket reading too using a new thread.
253 */
254 int can_bus_t::init_can_dev()
255 {
256         std::vector<std::string> devices_name;
257         int i;
258         size_t t;
259
260         devices_name = read_conf();
261
262         if (! devices_name.empty())
263         {
264                 t = devices_name.size();
265                 i=0;
266
267                 for(const auto& device : devices_name)
268                 {
269                         can_devices_.push_back(std::make_shared<can_bus_dev_t>(device, i));
270                         if (can_devices_[i]->open() == 0)
271                         {
272                                 DEBUG(binder_interface, "Start reading thread");
273                                 NOTICE(binder_interface, "%s device opened and reading", device.c_str());
274                                 can_devices_[i]->start_reading(*this);
275                         }
276                         else
277                                 ERROR(binder_interface, "Can't open device %s", device.c_str());
278                         i++;
279                 }
280
281                 NOTICE(binder_interface, "Initialized %d/%d can bus device(s)", i, t);
282                 return 0;
283         }
284         ERROR(binder_interface, "init_can_dev: Error at CAN device initialization. No devices read from configuration file. Did you specify canbus JSON object ?");
285         return 1;
286 }
287
288 /**
289 * @brief read the conf_file_ and will parse json objects
290 * in it searching for canbus objects devices name.
291 *
292 * @return Vector of can bus device name string.
293 */
294 std::vector<std::string> can_bus_t::read_conf()
295 {
296         std::vector<std::string> ret;
297         json_object *jo, *canbus;
298         int n, i;
299         const char* taxi;
300
301         FILE *fd = fdopen(conf_file_, "r");
302         if (fd)
303         {
304                 std::string fd_conf_content;
305                 std::fseek(fd, 0, SEEK_END);
306                 fd_conf_content.resize(std::ftell(fd));
307                 std::rewind(fd);
308                 std::fread(&fd_conf_content[0], 1, fd_conf_content.size(), fd);
309                 std::fclose(fd);
310
311                 DEBUG(binder_interface, "Configuration file content : %s", fd_conf_content.c_str());
312                 jo = json_tokener_parse(fd_conf_content.c_str());
313
314                 if (jo == NULL || !json_object_object_get_ex(jo, "canbus", &canbus))
315                 {
316                         ERROR(binder_interface, "Can't find canbus node in the configuration file. Please review it.");
317                         ret.clear();
318                 }
319                 else if (json_object_get_type(canbus) != json_type_array)
320                 {
321                         taxi = json_object_get_string(canbus);
322                         DEBUG(binder_interface, "Can bus found: %s", taxi);
323                         ret.push_back(std::string(taxi));
324                 }
325                 else
326                 {
327                         n = json_object_array_length(canbus);
328                         for (i = 0 ; i < n ; i++)
329                                 ret.push_back(json_object_get_string(json_object_array_get_idx(canbus, i)));
330                 }
331                 return ret;
332         }
333         ERROR(binder_interface, "Problem at reading the conf file");
334         ret.clear();
335         return ret;
336 }
337
338 /**
339 * @brief return new_can_message_cv_ member
340 *
341 * @return  return new_can_message_cv_ member
342 */
343 std::condition_variable& can_bus_t::get_new_can_message_cv()
344 {
345         return new_can_message_cv_;
346 }
347
348 /**
349 * @brief return can_message_mutex_ member
350 *
351 * @return  return can_message_mutex_ member
352 */
353 std::mutex& can_bus_t::get_can_message_mutex()
354 {
355         return can_message_mutex_;
356 }
357
358 /**
359 * @brief Return first can_message_t on the queue
360 *
361 * @return a can_message_t
362 */
363 can_message_t can_bus_t::next_can_message()
364 {
365         can_message_t can_msg;
366
367         if(!can_message_q_.empty())
368         {
369                 can_msg = can_message_q_.front();
370                 can_message_q_.pop();
371                 DEBUG(binder_interface, "next_can_message: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", can_msg.get_id(), can_msg.get_length(),
372                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
373                 return can_msg;
374         }
375
376         return can_msg;
377 }
378
379 /**
380 * @brief Push a can_message_t into the queue
381 *
382 * @param the const reference can_message_t object to push into the queue
383 */
384 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
385 {
386         can_message_q_.push(can_msg);
387 }
388
389 /**
390 * @brief Return first openxc_VehicleMessage on the queue
391 *
392 * @return a openxc_VehicleMessage containing a decoded can message
393 */
394 openxc_VehicleMessage can_bus_t::next_vehicle_message()
395 {
396         openxc_VehicleMessage v_msg;
397
398         if(! vehicle_message_q_.empty())
399         {
400                 v_msg = vehicle_message_q_.front();
401                 vehicle_message_q_.pop();
402                 DEBUG(binder_interface, "next_vehicle_message: next vehicle message poped");
403                 return v_msg;
404         }
405
406         return v_msg;
407 }
408
409 /**
410 * @brief Push a openxc_VehicleMessage into the queue
411 *
412 * @param the const reference openxc_VehicleMessage object to push into the queue
413 */
414 void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
415 {
416         vehicle_message_q_.push(v_msg);
417 }
418
419 /**
420 * @brief Return a map with the can_bus_dev_t initialized
421 *
422 * @return map can_bus_dev_m_ map
423 */
424 const std::vector<std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
425 {
426         return can_devices_;
427 }