0c2337c5d0b062e0fb8c93f1a1d4089e73e087c3
[apps/low-level-can-service.git] / src / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <map>
19 #include <cerrno>
20 #include <vector>
21 #include <string>
22 #include <fcntl.h>
23 #include <unistd.h>
24 #include <net/if.h>
25 #include <sys/ioctl.h>
26 #include <sys/socket.h>
27 #include <json-c/json.h>
28 #include <linux/can/raw.h>
29
30 #include "can-bus.hpp"
31
32 #include "can-signals.hpp"
33 #include "can-decoder.hpp"
34 #include "../configuration.hpp"
35 #include "../utils/signals.hpp"
36 #include "../utils/openxc-utils.hpp"
37
38 extern "C"
39 {
40         #include <afb/afb-binding.h>
41 }
42
43 /**
44 * @brief Class constructor
45 *
46 * @param struct afb_binding_interface *interface between daemon and binding
47 * @param int file handle to the json configuration file.
48 */
49 can_bus_t::can_bus_t(int conf_file)
50         : conf_file_{conf_file}
51 {
52 }
53
54 std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;
55
56 /**
57  * @brief Will make the decoding operation on a classic CAN message. It will not
58  * handle CAN commands nor diagnostic messages that have their own method to get
59  * this happens.
60  *
61  * It will add to the vehicle_message queue the decoded message and tell the event push
62  * thread to process it.
63  *
64  * @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
65  *
66  * @return How many signals has been decoded.
67  */
68 int can_bus_t::process_can_signals(can_message_t& can_message)
69 {
70         int processed_signals = 0;
71         std::vector <can_signal_t*> signals;
72         openxc_DynamicField search_key, decoded_message;
73         openxc_VehicleMessage vehicle_message;
74
75         /* First we have to found which can_signal_t it is */
76         search_key = build_DynamicField((double)can_message.get_id());
77         configuration_t::instance().find_can_signals(search_key, signals);
78
79         /* Decoding the message ! Don't kill the messenger ! */
80         for(auto& sig : signals)
81         {
82                 std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
83                 std::map<std::string, struct afb_event>& s = get_subscribed_signals();
84
85                 /* DEBUG message to make easier debugger STL containers...
86                 DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
87                 DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
88                 DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
89                 DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name)));*/
90                 if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
91                 {
92                         decoded_message = decoder_t::translateSignal(*sig, can_message, configuration_t::instance().get_can_signals());
93
94                         openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
95                         vehicle_message = build_VehicleMessage(s_message);
96
97                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
98                         push_new_vehicle_message(vehicle_message);
99                         new_decoded_can_message_.notify_one();
100                         processed_signals++;
101                 }
102         }
103
104         DEBUG(binder_interface, "process_can_signals: %d/%d CAN signals processed.", processed_signals, (int)signals.size());
105         return processed_signals;
106 }
107
108 /**
109  * @brief Will make the decoding operation on a diagnostic CAN message.It will add to
110  * the vehicle_message queue the decoded message and tell the event push thread to process it.
111  *
112  * @param[in] manager - the diagnostic manager object that handle diagnostic communication
113  * @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
114  *
115  * @return How many signals has been decoded.
116  */
117 int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
118 {
119         int processed_signals = 0;
120
121         std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
122         std::map<std::string, struct afb_event>& s = get_subscribed_signals();
123
124         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
125         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
126                 (s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
127         {
128                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
129                 push_new_vehicle_message(vehicle_message);
130                 new_decoded_can_message_.notify_one();
131                 processed_signals++;
132         }
133
134         return processed_signals;
135 }
136
137 /**
138 * @brief thread to decoding raw CAN messages.
139 *
140 * @desc It will take from the can_message_q_ queue the next can message to process then it will search
141 *  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
142 *  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
143 *  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
144 *  noopDecoder function that will operate on it.
145 *
146 *  Depending on the nature of message, if id match a diagnostic request corresponding id for a response
147 *  then decoding a diagnostic message else use classic CAN signals decoding functions.
148 *
149 *  TODO: make diagnostic messages parsing optionnal.
150 */
151 void can_bus_t::can_decode_message()
152 {
153         can_message_t can_message;
154
155         while(is_decoding_)
156         {
157                 std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
158                 new_can_message_cv_.wait(can_message_lock);
159                 can_message = next_can_message();
160
161                 if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
162                         process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
163                 else
164                         process_can_signals(can_message);
165         }
166 }
167
168 /**
169 * @brief thread to push events to suscribers. It will read subscribed_signals map to look
170 * which are events that has to be pushed.
171 */
172 void can_bus_t::can_event_push()
173 {
174         openxc_VehicleMessage v_message;
175         openxc_SimpleMessage s_message;
176         json_object* jo;
177
178         while(is_pushing_)
179         {
180                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
181                 new_decoded_can_message_.wait(decoded_can_message_lock);
182                 v_message = next_vehicle_message();
183
184                 s_message = get_simple_message(v_message);
185                 {
186                         std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
187                         std::map<std::string, struct afb_event>& s = get_subscribed_signals();
188                         if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
189                         {
190                                 jo = json_object_new_object();
191                                 jsonify_simple(s_message, jo);
192                                 afb_event_push(s[std::string(s_message.name)], jo);
193                         }
194                 }
195         }
196 }
197
198 /**
199 * @brief Will initialize threads that will decode
200 *  and push subscribed events.
201 */
202 void can_bus_t::start_threads()
203 {
204         is_decoding_ = true;
205         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
206         if(!th_decoding_.joinable())
207                 is_decoding_ = false;
208
209         is_pushing_ = true;
210         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
211         if(!th_pushing_.joinable())
212                 is_pushing_ = false;
213 }
214
215 /**
216 * @brief Will stop all threads holded by can_bus_t object
217 *  which are decoding and pushing then will wait that's
218 * they'll finish their job.
219 */
220 void can_bus_t::stop_threads()
221 {
222         is_decoding_ = false;
223         is_pushing_ = false;
224 }
225
226 /**
227 * @brief Will initialize can_bus_dev_t objects after reading
228 * the configuration file passed in the constructor. All CAN buses
229 * Initialized here will be added to a vector holding them for
230 * inventory and later access.
231 *
232 * That will initialize CAN socket reading too using a new thread.
233 */
234 int can_bus_t::init_can_dev()
235 {
236         std::vector<std::string> devices_name;
237         int i = 0;
238         size_t t;
239
240         devices_name = read_conf();
241
242         if (! devices_name.empty())
243         {
244                 t = devices_name.size();
245
246                 for(const auto& device : devices_name)
247                 {
248                         can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
249                         if (can_bus_t::can_devices_[device]->open() == 0)
250                         {
251                                 DEBUG(binder_interface, "Start reading thread");
252                                 NOTICE(binder_interface, "%s device opened and reading", device.c_str());
253                                 can_bus_t::can_devices_[device]->start_reading(*this);
254                                 i++;
255                         }
256                         else
257                                 ERROR(binder_interface, "Can't open device %s", device.c_str());
258                 }
259
260                 NOTICE(binder_interface, "Initialized %d/%d can bus device(s)", i, t);
261                 return 0;
262         }
263         ERROR(binder_interface, "init_can_dev: Error at CAN device initialization. No devices read from configuration file. Did you specify canbus JSON object ?");
264         return 1;
265 }
266
267 /**
268 * @brief read the conf_file_ and will parse json objects
269 * in it searching for canbus objects devices name.
270 *
271 * @return Vector of can bus device name string.
272 */
273 std::vector<std::string> can_bus_t::read_conf()
274 {
275         std::vector<std::string> ret;
276         json_object *jo, *canbus;
277         int n, i;
278         const char* taxi;
279
280         FILE *fd = fdopen(conf_file_, "r");
281         if (fd)
282         {
283                 std::string fd_conf_content;
284                 std::fseek(fd, 0, SEEK_END);
285                 fd_conf_content.resize(std::ftell(fd));
286                 std::rewind(fd);
287                 std::fread(&fd_conf_content[0], 1, fd_conf_content.size(), fd);
288                 std::fclose(fd);
289
290                 DEBUG(binder_interface, "Configuration file content : %s", fd_conf_content.c_str());
291                 jo = json_tokener_parse(fd_conf_content.c_str());
292
293                 if (jo == NULL || !json_object_object_get_ex(jo, "canbus", &canbus))
294                 {
295                         ERROR(binder_interface, "Can't find canbus node in the configuration file. Please review it.");
296                         ret.clear();
297                 }
298                 else if (json_object_get_type(canbus) != json_type_array)
299                 {
300                         taxi = json_object_get_string(canbus);
301                         DEBUG(binder_interface, "Can bus found: %s", taxi);
302                         ret.push_back(std::string(taxi));
303                 }
304                 else
305                 {
306                         n = json_object_array_length(canbus);
307                         for (i = 0 ; i < n ; i++)
308                                 ret.push_back(json_object_get_string(json_object_array_get_idx(canbus, i)));
309                 }
310                 return ret;
311         }
312         ERROR(binder_interface, "Problem at reading the conf file");
313         ret.clear();
314         return ret;
315 }
316
317 /**
318 * @brief return new_can_message_cv_ member
319 *
320 * @return  return new_can_message_cv_ member
321 */
322 std::condition_variable& can_bus_t::get_new_can_message_cv()
323 {
324         return new_can_message_cv_;
325 }
326
327 /**
328 * @brief return can_message_mutex_ member
329 *
330 * @return  return can_message_mutex_ member
331 */
332 std::mutex& can_bus_t::get_can_message_mutex()
333 {
334         return can_message_mutex_;
335 }
336
337 /**
338 * @brief Return first can_message_t on the queue
339 *
340 * @return a can_message_t
341 */
342 can_message_t can_bus_t::next_can_message()
343 {
344         can_message_t can_msg;
345
346         if(!can_message_q_.empty())
347         {
348                 can_msg = can_message_q_.front();
349                 can_message_q_.pop();
350                 DEBUG(binder_interface, "next_can_message: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", can_msg.get_id(), can_msg.get_length(),
351                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
352                 return can_msg;
353         }
354
355         return can_msg;
356 }
357
358 /**
359 * @brief Push a can_message_t into the queue
360 *
361 * @param the const reference can_message_t object to push into the queue
362 */
363 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
364 {
365         can_message_q_.push(can_msg);
366 }
367
368 /**
369 * @brief Return first openxc_VehicleMessage on the queue
370 *
371 * @return a openxc_VehicleMessage containing a decoded can message
372 */
373 openxc_VehicleMessage can_bus_t::next_vehicle_message()
374 {
375         openxc_VehicleMessage v_msg;
376
377         if(! vehicle_message_q_.empty())
378         {
379                 v_msg = vehicle_message_q_.front();
380                 vehicle_message_q_.pop();
381                 DEBUG(binder_interface, "next_vehicle_message: next vehicle message poped");
382                 return v_msg;
383         }
384
385         return v_msg;
386 }
387
388 /**
389 * @brief Push a openxc_VehicleMessage into the queue
390 *
391 * @param the const reference openxc_VehicleMessage object to push into the queue
392 */
393 void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
394 {
395         vehicle_message_q_.push(v_msg);
396 }
397
398 /**
399 * @brief Return a map with the can_bus_dev_t initialized
400 *
401 * @return map can_bus_dev_m_ map
402 */
403 const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
404 {
405         return can_bus_t::can_devices_;
406 }
407
408 /**
409 * @brief Return the shared pointer on the can_bus_dev_t initialized 
410 * with device_name "bus"
411 *
412 * @param[in] bus - CAN bus device name to retrieve.
413 *
414 * @return A shared pointer on an object can_bus_dev_t
415 */
416 std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
417 {
418         return can_bus_t::can_devices_[bus];
419 }