Implement check of supported diagnostic PID.
[apps/agl-service-can-low-level.git] / src / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <map>
19 #include <cerrno>
20 #include <vector>
21 #include <string>
22 #include <fcntl.h>
23 #include <unistd.h>
24 #include <net/if.h>
25 #include <sys/ioctl.h>
26 #include <sys/socket.h>
27 #include <json-c/json.h>
28 #include <linux/can/raw.h>
29
30 #include "can-bus.hpp"
31
32 #include "can-decoder.hpp"
33 #include "../configuration.hpp"
34 #include "../utils/signals.hpp"
35 #include "../utils/openxc-utils.hpp"
36
37 extern "C"
38 {
39         #include <afb/afb-binding.h>
40 }
41
42 /**
43 * @brief Class constructor
44 *
45 * @param struct afb_binding_interface *interface between daemon and binding
46 * @param int file handle to the json configuration file.
47 */
48 can_bus_t::can_bus_t(int conf_file)
49         : conf_file_{conf_file}
50 {
51 }
52
53 std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;
54
55 /**
56  * @brief Will make the decoding operation on a classic CAN message. It will not
57  * handle CAN commands nor diagnostic messages that have their own method to get
58  * this happens.
59  *
60  * It will add to the vehicle_message queue the decoded message and tell the event push
61  * thread to process it.
62  *
63  * @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
64  *
65  * @return How many signals has been decoded.
66  */
67 int can_bus_t::process_can_signals(can_message_t& can_message)
68 {
69         int processed_signals = 0;
70         std::vector <can_signal_t*> signals;
71         openxc_DynamicField search_key, decoded_message;
72         openxc_VehicleMessage vehicle_message;
73
74         /* First we have to found which can_signal_t it is */
75         search_key = build_DynamicField((double)can_message.get_id());
76         configuration_t::instance().find_can_signals(search_key, signals);
77
78         /* Decoding the message ! Don't kill the messenger ! */
79         for(auto& sig : signals)
80         {
81                 std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
82                 std::map<std::string, struct afb_event>& s = get_subscribed_signals();
83
84                 /* DEBUG message to make easier debugger STL containers...
85                 DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
86                 DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
87                 DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
88                 DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name)));*/
89                 if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
90                 {
91                         decoded_message = decoder_t::translateSignal(*sig, can_message, configuration_t::instance().get_can_signals());
92
93                         openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_generic_name(), decoded_message);
94                         vehicle_message = build_VehicleMessage(s_message);
95
96                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
97                         push_new_vehicle_message(vehicle_message);
98                         new_decoded_can_message_.notify_one();
99                         processed_signals++;
100                 }
101         }
102
103         DEBUG(binder_interface, "process_can_signals: %d/%d CAN signals processed.", processed_signals, (int)signals.size());
104         return processed_signals;
105 }
106
107 /**
108  * @brief Will make the decoding operation on a diagnostic CAN message.It will add to
109  * the vehicle_message queue the decoded message and tell the event push thread to process it.
110  *
111  * @param[in] manager - the diagnostic manager object that handle diagnostic communication
112  * @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
113  *
114  * @return How many signals has been decoded.
115  */
116 int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
117 {
118         int processed_signals = 0;
119
120         std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
121         std::map<std::string, struct afb_event>& s = get_subscribed_signals();
122
123         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
124         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
125                 (s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
126         {
127                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
128                 push_new_vehicle_message(vehicle_message);
129                 new_decoded_can_message_.notify_one();
130                 processed_signals++;
131         }
132
133         return processed_signals;
134 }
135
136 /**
137 * @brief thread to decoding raw CAN messages.
138 *
139 * @desc It will take from the can_message_q_ queue the next can message to process then it will search
140 *  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
141 *  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
142 *  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
143 *  noopDecoder function that will operate on it.
144 *
145 *  Depending on the nature of message, if id match a diagnostic request corresponding id for a response
146 *  then decoding a diagnostic message else use classic CAN signals decoding functions.
147 *
148 *  TODO: make diagnostic messages parsing optionnal.
149 */
150 void can_bus_t::can_decode_message()
151 {
152         can_message_t can_message;
153
154         while(is_decoding_)
155         {
156                 std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
157                 new_can_message_cv_.wait(can_message_lock);
158                 can_message = next_can_message();
159
160                 if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
161                         process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
162                 else
163                         process_can_signals(can_message);
164         }
165 }
166
167 /**
168 * @brief thread to push events to suscribers. It will read subscribed_signals map to look
169 * which are events that has to be pushed.
170 */
171 void can_bus_t::can_event_push()
172 {
173         openxc_VehicleMessage v_message;
174         openxc_SimpleMessage s_message;
175         json_object* jo;
176
177         while(is_pushing_)
178         {
179                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
180                 new_decoded_can_message_.wait(decoded_can_message_lock);
181                 v_message = next_vehicle_message();
182
183                 s_message = get_simple_message(v_message);
184                 {
185                         std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
186                         std::map<std::string, struct afb_event>& s = get_subscribed_signals();
187                         if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
188                         {
189                                 jo = json_object_new_object();
190                                 jsonify_simple(s_message, jo);
191                                 afb_event_push(s[std::string(s_message.name)], jo);
192                         }
193                 }
194         }
195 }
196
197 /**
198 * @brief Will initialize threads that will decode
199 *  and push subscribed events.
200 */
201 void can_bus_t::start_threads()
202 {
203         is_decoding_ = true;
204         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
205         if(!th_decoding_.joinable())
206                 is_decoding_ = false;
207
208         is_pushing_ = true;
209         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
210         if(!th_pushing_.joinable())
211                 is_pushing_ = false;
212 }
213
214 /**
215 * @brief Will stop all threads holded by can_bus_t object
216 *  which are decoding and pushing then will wait that's
217 * they'll finish their job.
218 */
219 void can_bus_t::stop_threads()
220 {
221         is_decoding_ = false;
222         is_pushing_ = false;
223 }
224
225 /**
226 * @brief Will initialize can_bus_dev_t objects after reading
227 * the configuration file passed in the constructor. All CAN buses
228 * Initialized here will be added to a vector holding them for
229 * inventory and later access.
230 *
231 * That will initialize CAN socket reading too using a new thread.
232 */
233 int can_bus_t::init_can_dev()
234 {
235         std::vector<std::string> devices_name;
236         int i = 0;
237         size_t t;
238
239         devices_name = read_conf();
240
241         if (! devices_name.empty())
242         {
243                 t = devices_name.size();
244
245                 for(const auto& device : devices_name)
246                 {
247                         can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
248                         if (can_bus_t::can_devices_[device]->open() == 0)
249                         {
250                                 DEBUG(binder_interface, "Start reading thread");
251                                 NOTICE(binder_interface, "%s device opened and reading", device.c_str());
252                                 can_bus_t::can_devices_[device]->start_reading(*this);
253                                 i++;
254                         }
255                         else
256                                 ERROR(binder_interface, "Can't open device %s", device.c_str());
257                 }
258
259                 NOTICE(binder_interface, "Initialized %d/%d can bus device(s)", i, t);
260                 return 0;
261         }
262         ERROR(binder_interface, "init_can_dev: Error at CAN device initialization. No devices read from configuration file. Did you specify canbus JSON object ?");
263         return 1;
264 }
265
266 /**
267 * @brief read the conf_file_ and will parse json objects
268 * in it searching for canbus objects devices name.
269 *
270 * @return Vector of can bus device name string.
271 */
272 std::vector<std::string> can_bus_t::read_conf()
273 {
274         std::vector<std::string> ret;
275         json_object *jo, *canbus;
276         int n, i;
277         const char* taxi;
278
279         FILE *fd = fdopen(conf_file_, "r");
280         if (fd)
281         {
282                 std::string fd_conf_content;
283                 std::fseek(fd, 0, SEEK_END);
284                 fd_conf_content.resize(std::ftell(fd));
285                 std::rewind(fd);
286                 std::fread(&fd_conf_content[0], 1, fd_conf_content.size(), fd);
287                 std::fclose(fd);
288
289                 DEBUG(binder_interface, "Configuration file content : %s", fd_conf_content.c_str());
290                 jo = json_tokener_parse(fd_conf_content.c_str());
291
292                 if (jo == NULL || !json_object_object_get_ex(jo, "canbus", &canbus))
293                 {
294                         ERROR(binder_interface, "Can't find canbus node in the configuration file. Please review it.");
295                         ret.clear();
296                 }
297                 else if (json_object_get_type(canbus) != json_type_array)
298                 {
299                         taxi = json_object_get_string(canbus);
300                         DEBUG(binder_interface, "Can bus found: %s", taxi);
301                         ret.push_back(std::string(taxi));
302                 }
303                 else
304                 {
305                         n = json_object_array_length(canbus);
306                         for (i = 0 ; i < n ; i++)
307                                 ret.push_back(json_object_get_string(json_object_array_get_idx(canbus, i)));
308                 }
309                 return ret;
310         }
311         ERROR(binder_interface, "Problem at reading the conf file");
312         ret.clear();
313         return ret;
314 }
315
316 /**
317 * @brief return new_can_message_cv_ member
318 *
319 * @return  return new_can_message_cv_ member
320 */
321 std::condition_variable& can_bus_t::get_new_can_message_cv()
322 {
323         return new_can_message_cv_;
324 }
325
326 /**
327 * @brief return can_message_mutex_ member
328 *
329 * @return  return can_message_mutex_ member
330 */
331 std::mutex& can_bus_t::get_can_message_mutex()
332 {
333         return can_message_mutex_;
334 }
335
336 /**
337 * @brief Return first can_message_t on the queue
338 *
339 * @return a can_message_t
340 */
341 can_message_t can_bus_t::next_can_message()
342 {
343         can_message_t can_msg;
344
345         if(!can_message_q_.empty())
346         {
347                 can_msg = can_message_q_.front();
348                 can_message_q_.pop();
349                 DEBUG(binder_interface, "next_can_message: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", can_msg.get_id(), can_msg.get_length(),
350                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
351                 return can_msg;
352         }
353
354         return can_msg;
355 }
356
357 /**
358 * @brief Push a can_message_t into the queue
359 *
360 * @param the const reference can_message_t object to push into the queue
361 */
362 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
363 {
364         can_message_q_.push(can_msg);
365 }
366
367 /**
368 * @brief Return first openxc_VehicleMessage on the queue
369 *
370 * @return a openxc_VehicleMessage containing a decoded can message
371 */
372 openxc_VehicleMessage can_bus_t::next_vehicle_message()
373 {
374         openxc_VehicleMessage v_msg;
375
376         if(! vehicle_message_q_.empty())
377         {
378                 v_msg = vehicle_message_q_.front();
379                 vehicle_message_q_.pop();
380                 DEBUG(binder_interface, "next_vehicle_message: next vehicle message poped");
381                 return v_msg;
382         }
383
384         return v_msg;
385 }
386
387 /**
388 * @brief Push a openxc_VehicleMessage into the queue
389 *
390 * @param the const reference openxc_VehicleMessage object to push into the queue
391 */
392 void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
393 {
394         vehicle_message_q_.push(v_msg);
395 }
396
397 /**
398 * @brief Return a map with the can_bus_dev_t initialized
399 *
400 * @return map can_bus_dev_m_ map
401 */
402 const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
403 {
404         return can_bus_t::can_devices_;
405 }
406
407 /**
408 * @brief Return the shared pointer on the can_bus_dev_t initialized 
409 * with device_name "bus"
410 *
411 * @param[in] bus - CAN bus device name to retrieve.
412 *
413 * @return A shared pointer on an object can_bus_dev_t
414 */
415 std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
416 {
417         return can_bus_t::can_devices_[bus];
418 }