can-bus: process signal rework to subscribe message
[apps/agl-service-can-low-level.git] / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2018 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <net/if.h>
19 #include <sys/socket.h>
20 #include <json-c/json.h>
21 #include <linux/can/raw.h>
22 #include <map>
23 #include <cerrno>
24 #include <vector>
25 #include <string>
26 #include <algorithm>
27
28 #include "can-bus.hpp"
29
30 #include "signals.hpp"
31 #include "can-decoder.hpp"
32 #include "../binding/application.hpp"
33 #include "../utils/signals.hpp"
34 #include "../utils/openxc-utils.hpp"
35
36 /// @brief Class destructor
37 ///
38 /// @param[in] conf_file - Stop threads and unlock them to correctly finish them
39 /// even without any activity on the CAN bus.
40 can_bus_t::~can_bus_t()
41 {
42         stop_threads();
43         new_can_message_cv_.notify_one();
44 }
45
46 /// @brief Class constructor
47 can_bus_t::can_bus_t()
48 {}
49
50 /// @brief Fills the CAN device map member with value from device
51 ///
52 /// @param[in] mapping configuration section.
53 void can_bus_t::set_can_devices(json_object *mapping)
54 {
55         if (! mapping)
56         {
57                 AFB_ERROR("Can't initialize CAN buses with this empty mapping.");
58                 return;
59         }
60
61         struct json_object_iterator it = json_object_iter_begin(mapping);
62         struct json_object_iterator end = json_object_iter_end(mapping);
63         while (! json_object_iter_equal(&it, &end)) {
64                 can_devices_mapping_.push_back(std::make_pair(
65                         json_object_iter_peek_name(&it),
66                         json_object_get_string(json_object_iter_peek_value(&it))
67                         ));
68                 json_object_iter_next(&it);
69         }
70 }
71
72 /// @brief Take a decoded message to determine if its value complies with the desired
73 /// filters.
74 ///
75 /// @param[in] vehicle_message - The decoded message to be analyzed.
76 /// @param[in] can_subscription - the subscription which will be notified depending
77 ///  on its filtering values. Filtering values are stored in the event_filtermember.
78 ///
79 /// @return True if the value is compliant with event filter values, false if not...
80 bool can_bus_t::apply_filter(const openxc_VehicleMessage& vehicle_message, std::shared_ptr<low_can_subscription_t> can_subscription)
81 {
82         bool send = false;
83         if(is_valid(vehicle_message))
84         {
85                 float min = can_subscription->get_min();
86                 float max = can_subscription->get_max();
87                 double value = get_numerical_from_DynamicField(vehicle_message);
88                 send = (value < min || value > max) ? false : true;
89         }
90         return send;
91 }
92
93 /// @brief Will make the decoding operation on a classic CAN message. It will not
94 /// handle CAN commands nor diagnostic messages that have their own method to get
95 /// this happens.
96 ///
97 /// It will add to the vehicle_message queue the decoded message and tell the event push
98 /// thread to process it.
99 ///
100 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
101 ///
102 /// @return How many signals has been decoded.
103 void can_bus_t::process_signals(std::shared_ptr<message_t> message, map_subscription& s)
104 {
105         int subscription_id = message->get_sub_id();
106         openxc_DynamicField decoded_message;
107         openxc_VehicleMessage vehicle_message;
108
109         if( s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
110         {
111                 bool send = true;
112                 // First we have to found which signal_t it is
113                 std::shared_ptr<low_can_subscription_t> subscription = s[subscription_id];
114                 openxc_SimpleMessage s_message;
115
116                 // messages
117                 if(subscription->get_message_definition() != nullptr)
118                 {
119                         openxc_DynamicField dynamicField_tmp;
120                         json_object *signal_json_tmp;
121                         decoded_message = build_DynamicField_json(json_object_new_array());
122                         for(std::shared_ptr<signal_t> sig : subscription->get_message_definition()->get_signals())
123                         {
124                                 signal_json_tmp = json_object_new_object();
125                                 dynamicField_tmp = decoder_t::translate_signal(*sig, message, &send);
126                                 json_object_object_add(signal_json_tmp,"name", json_object_new_string(sig->get_name().c_str()));
127                                 jsonify_DynamicField(dynamicField_tmp,signal_json_tmp);
128                                 if(sig != nullptr && sig->get_unit() != "")
129                                         json_object_object_add(signal_json_tmp, "unit", json_object_new_string(sig->get_unit().c_str()));
130                                 json_object_array_add(decoded_message.json_value,signal_json_tmp);
131                         }
132                 }
133                 else // signal
134                 {
135                         decoded_message = decoder_t::translate_signal(*subscription->get_signal(), message, &send);
136                 }
137
138                 s_message = build_SimpleMessage(subscription->get_name(), decoded_message);
139                 vehicle_message = build_VehicleMessage(s_message, message->get_timestamp());
140
141                 if(send && apply_filter(vehicle_message, subscription))
142                 {
143                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
144                         push_new_vehicle_message(subscription_id, vehicle_message);
145                         AFB_DEBUG("%s CAN signals processed.", subscription->get_name().c_str());
146                 }
147         }
148 }
149
150 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
151 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
152 /// the event push thread to process it.
153 ///
154 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
155 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
156 ///
157 /// @return How many signals has been decoded.
158 void can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, std::shared_ptr<message_t> message, map_subscription& s)
159 {
160         int subscription_id = message->get_sub_id();
161
162         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(message);
163         if (message->get_timestamp())
164                 vehicle_message.timestamp = message->get_timestamp();
165         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
166                 s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
167         {
168                 if (apply_filter(vehicle_message, s[subscription_id]))
169                 {
170                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
171                         push_new_vehicle_message(subscription_id, vehicle_message);
172                         AFB_DEBUG("%s CAN signals processed.",  s[subscription_id]->get_name().c_str());
173                 }
174         }
175 }
176
177 /// @brief thread to decoding raw CAN messages.
178 ///
179 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
180 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
181 ///
182 /// It will take from the can_message_q_ queue the next can message to process then it search
183 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
184 ///  subscription has been made. Can message will be decoded using translate_signal that will pass it to the
185 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
186 ///  noopDecoder function that will operate on it.
187 ///
188 ///  TODO: make diagnostic messages parsing optionnal.
189 void can_bus_t::can_decode_message()
190 {
191         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
192
193         while(is_decoding_)
194         {
195                 std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
196                 new_can_message_cv_.wait(can_message_lock);
197                 while(!can_message_q_.empty())
198                 {
199                         std::shared_ptr<message_t>  message = next_can_message();
200                         can_message_lock.unlock();
201
202                         {
203                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
204                                 map_subscription& s = sm.get_subscribed_signals();
205                                 if(application_t::instance().get_diagnostic_manager().is_diagnostic_response(message))
206                                         process_diagnostic_signals(application_t::instance().get_diagnostic_manager(), message, s);
207                                 else
208                                         process_signals(message, s);
209                         }
210                         can_message_lock.lock();
211                 }
212                 new_decoded_can_message_.notify_one();
213                 can_message_lock.unlock();
214         }
215 }
216
217 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
218 /// which are events that has to be pushed.
219 void can_bus_t::can_event_push()
220 {
221         json_object* jo;
222         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
223
224         while(is_pushing_)
225         {
226                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
227                 new_decoded_can_message_.wait(decoded_can_message_lock);
228                 while(!vehicle_message_q_.empty())
229                 {
230                         std::pair<int, openxc_VehicleMessage> v_message = next_vehicle_message();
231                         decoded_can_message_lock.unlock();
232                         {
233                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
234                                 map_subscription& s = sm.get_subscribed_signals();
235                                 if(s.find(v_message.first) != s.end() && afb_event_is_valid(s[v_message.first]->get_event()))
236                                 {
237                                         jo = json_object_new_object();
238                                         jsonify_vehicle(v_message.second, s[v_message.first]->get_signal(), jo);
239                                         if(afb_event_push(s[v_message.first]->get_event(), jo) == 0)
240                                         {
241                                                 if(v_message.second.has_diagnostic_response)
242                                                         on_no_clients(s[v_message.first], v_message.second.diagnostic_response.pid, s);
243                                                 else
244                                                         on_no_clients(s[v_message.first], s);
245                                         }
246                                 }
247                         }
248                         decoded_can_message_lock.lock();
249                 }
250                 decoded_can_message_lock.unlock();
251         }
252 }
253
254 /// @brief Will initialize threads that will decode
255 ///  and push subscribed events.
256 void can_bus_t::start_threads()
257 {
258         is_decoding_ = true;
259         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
260         th_decoding_.detach();
261
262         is_pushing_ = true;
263         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
264         th_pushing_.detach();
265 }
266
267 /// @brief Will stop all threads holded by can_bus_t object
268 ///  which are decoding and pushing then will wait that's
269 /// they'll finish their job.
270 void can_bus_t::stop_threads()
271 {
272         is_decoding_ = false;
273         is_pushing_ = false;
274 }
275
276 /// @brief return new_can_message_cv_ member
277 ///
278 /// @return  return new_can_message_cv_ member
279 std::condition_variable& can_bus_t::get_new_can_message_cv()
280 {
281         return new_can_message_cv_;
282 }
283
284 /// @brief return can_message_mutex_ member
285 ///
286 /// @return  return can_message_mutex_ member
287 std::mutex& can_bus_t::get_can_message_mutex()
288 {
289         return can_message_mutex_;
290 }
291
292 /// @brief Return first can_message_t on the queue
293 ///
294 /// @return a can_message_t
295 std::shared_ptr<message_t> can_bus_t::next_can_message()
296 {
297         std::shared_ptr<message_t> msg;
298
299         if(!can_message_q_.empty())
300         {
301                 msg = can_message_q_.front();
302                 can_message_q_.pop();
303                 std::string debug = msg->get_debug_message();
304                 AFB_DEBUG(debug.c_str());
305                 return msg;
306         }
307
308         return msg;
309 }
310
311 /// @brief Push a message_t into the queue
312 ///
313 /// @param[in] msg - the const reference message_t object to push into the queue
314 void can_bus_t::push_new_can_message(std::shared_ptr<message_t> msg)
315 {
316         can_message_q_.push(msg);
317 }
318
319 /// @brief Return first openxc_VehicleMessage on the queue
320 ///
321 /// @return a openxc_VehicleMessage containing a decoded can message
322 std::pair<int, openxc_VehicleMessage> can_bus_t::next_vehicle_message()
323 {
324         std::pair<int, openxc_VehicleMessage> v_msg;
325
326         if(! vehicle_message_q_.empty())
327         {
328                 v_msg = vehicle_message_q_.front();
329                 vehicle_message_q_.pop();
330                 AFB_DEBUG("next vehicle message poped");
331                 return v_msg;
332         }
333
334         return v_msg;
335 }
336
337 /// @brief Push a openxc_VehicleMessage into the queue
338 ///
339 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
340 void can_bus_t::push_new_vehicle_message(int subscription_id, const openxc_VehicleMessage& v_msg)
341 {
342         vehicle_message_q_.push(std::make_pair(subscription_id, v_msg));
343 }
344
345 /// @brief Return the CAN device index from the map
346 /// map are sorted so index depend upon alphabetical sorting.
347 int can_bus_t::get_can_device_index(const std::string& bus_name) const
348 {
349         int i = 0;
350         for(const auto& d: can_devices_mapping_)
351         {
352                 if(d.first == bus_name)
353                         break;
354                 i++;
355         }
356         return i;
357 }
358
359 /// @brief Return CAN device name from a logical CAN device name gotten from
360 /// the signals.json description file which comes from a CAN databases file in
361 /// general.
362 const std::string can_bus_t::get_can_device_name(const std::string& id_name) const
363 {
364         std::string ret = "";
365         for(const auto& d: can_devices_mapping_)
366         {
367                 if(d.first == id_name)
368                 {
369                         ret = d.second;
370                         break;
371                 }
372         }
373         return ret;
374 }