Add some typedef to reduce the size of the lines
[apps/agl-service-can-low-level.git] / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2018 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <net/if.h>
19 #include <sys/socket.h>
20 #include <json-c/json.h>
21 #include <linux/can/raw.h>
22 #include <map>
23 #include <cerrno>
24 #include <vector>
25 #include <string>
26 #include <algorithm>
27
28 #include "can-bus.hpp"
29
30 #include "signals.hpp"
31 #include "can-decoder.hpp"
32 #include "../binding/application.hpp"
33 #include "../utils/signals.hpp"
34 #include "../utils/openxc-utils.hpp"
35
36 /// @brief Class destructor
37 ///
38 /// @param[in] conf_file - Stop threads and unlock them to correctly finish them
39 /// even without any activity on the CAN bus.
40 can_bus_t::~can_bus_t()
41 {
42         stop_threads();
43         new_can_message_cv_.notify_one();
44 }
45
46 /// @brief Class constructor
47 ///
48 /// @param[in] conf_file - handle to the json configuration file.
49 can_bus_t::can_bus_t(utils::config_parser_t conf_file)
50         : conf_file_{conf_file}
51 {}
52
53 /// @brief Take a decoded message to determine if its value complies with the desired
54 /// filters.
55 ///
56 /// @param[in] vehicle_message - The decoded message to be analyzed.
57 /// @param[in] can_subscription - the subscription which will be notified depending
58 ///  on its filtering values. Filtering values are stored in the event_filtermember.
59 ///
60 /// @return True if the value is compliant with event filter values, false if not...
61 bool can_bus_t::apply_filter(const openxc_VehicleMessage& vehicle_message, std::shared_ptr<low_can_subscription_t> can_subscription)
62 {
63         bool send = false;
64         if(is_valid(vehicle_message))
65         {
66                 float min = can_subscription->get_min();
67                 float max = can_subscription->get_max();
68                 double value = get_numerical_from_DynamicField(vehicle_message);
69                 send = (value < min || value > max) ? false : true;
70         }
71         return send;
72 }
73
74 /// @brief Will make the decoding operation on a classic CAN message. It will not
75 /// handle CAN commands nor diagnostic messages that have their own method to get
76 /// this happens.
77 ///
78 /// It will add to the vehicle_message queue the decoded message and tell the event push
79 /// thread to process it.
80 ///
81 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
82 ///
83 /// @return How many signals has been decoded.
84 void can_bus_t::process_signals(std::shared_ptr<message_t> message, map_subscription& s)
85 {
86         int subscription_id = message->get_sub_id();
87         openxc_DynamicField decoded_message;
88         openxc_VehicleMessage vehicle_message;
89
90         if( s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
91         {
92                 bool send = true;
93                 // First we have to found which signal_t it is
94                 std::shared_ptr<low_can_subscription_t> sig = s[subscription_id];
95
96                 decoded_message = decoder_t::translate_signal(*sig->get_signal(), message, &send);
97                 openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
98                 vehicle_message = build_VehicleMessage(s_message, message->get_timestamp());
99
100                 if(send && apply_filter(vehicle_message, sig))
101                 {
102                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
103                         push_new_vehicle_message(subscription_id, vehicle_message);
104                         AFB_DEBUG("%s CAN signals processed.", sig->get_name().c_str());
105                 }
106         }
107 }
108
109 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
110 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
111 /// the event push thread to process it.
112 ///
113 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
114 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
115 ///
116 /// @return How many signals has been decoded.
117 void can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, std::shared_ptr<message_t> message, map_subscription& s)
118 {
119         int subscription_id = message->get_sub_id();
120
121         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(message);
122         if (message->get_timestamp())
123                 {vehicle_message.timestamp = message->get_timestamp();}
124         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
125                 s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
126         {
127                 if (apply_filter(vehicle_message, s[subscription_id]))
128                 {
129                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
130                         push_new_vehicle_message(subscription_id, vehicle_message);
131                         AFB_DEBUG("%s CAN signals processed.",  s[subscription_id]->get_name().c_str());
132                 }
133         }
134 }
135
136 /// @brief thread to decoding raw CAN messages.
137 ///
138 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
139 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
140 ///
141 /// It will take from the can_message_q_ queue the next can message to process then it search
142 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
143 ///  subscription has been made. Can message will be decoded using translate_signal that will pass it to the
144 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
145 ///  noopDecoder function that will operate on it.
146 ///
147 ///  TODO: make diagnostic messages parsing optionnal.
148 void can_bus_t::can_decode_message()
149 {
150         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
151
152         while(is_decoding_)
153         {
154                 std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
155                 new_can_message_cv_.wait(can_message_lock);
156                 while(!can_message_q_.empty())
157                 {
158                         std::shared_ptr<message_t>  message = next_can_message();
159                         can_message_lock.unlock();
160
161                         {
162                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
163                                 map_subscription& s = sm.get_subscribed_signals();
164                                 if(application_t::instance().get_diagnostic_manager().is_diagnostic_response(message))
165                                 {
166                                         process_diagnostic_signals(application_t::instance().get_diagnostic_manager(), message, s);
167                                 }
168                                 else
169                                         {process_signals(message, s);}
170                         }
171                         can_message_lock.lock();
172                 }
173                 new_decoded_can_message_.notify_one();
174                 can_message_lock.unlock();
175         }
176 }
177
178 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
179 /// which are events that has to be pushed.
180 void can_bus_t::can_event_push()
181 {
182         json_object* jo;
183         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
184
185         while(is_pushing_)
186         {
187                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
188                 new_decoded_can_message_.wait(decoded_can_message_lock);
189                 while(!vehicle_message_q_.empty())
190                 {
191                         std::pair<int, openxc_VehicleMessage> v_message = next_vehicle_message();
192                         decoded_can_message_lock.unlock();
193                         {
194                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
195                                 map_subscription& s = sm.get_subscribed_signals();
196                                 if(s.find(v_message.first) != s.end() && afb_event_is_valid(s[v_message.first]->get_event()))
197                                 {
198                                         jo = json_object_new_object();
199                                         jsonify_vehicle(v_message.second, jo);
200                                         if(afb_event_push(s[v_message.first]->get_event(), jo) == 0)
201                                         {
202                                                 if(v_message.second.has_diagnostic_response)
203                                                         {on_no_clients(s[v_message.first], v_message.second.diagnostic_response.pid, s);}
204                                                 else
205                                                         {on_no_clients(s[v_message.first], s);}
206                                         }
207                                 }
208                         }
209                         decoded_can_message_lock.lock();
210                 }
211                 decoded_can_message_lock.unlock();
212         }
213 }
214
215 /// @brief Will initialize threads that will decode
216 ///  and push subscribed events.
217 void can_bus_t::start_threads()
218 {
219         is_decoding_ = true;
220         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
221         th_decoding_.detach();
222
223         is_pushing_ = true;
224         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
225         th_pushing_.detach();
226 }
227
228 /// @brief Will stop all threads holded by can_bus_t object
229 ///  which are decoding and pushing then will wait that's
230 /// they'll finish their job.
231 void can_bus_t::stop_threads()
232 {
233         is_decoding_ = false;
234         is_pushing_ = false;
235 }
236
237 /// @brief return new_can_message_cv_ member
238 ///
239 /// @return  return new_can_message_cv_ member
240 std::condition_variable& can_bus_t::get_new_can_message_cv()
241 {
242         return new_can_message_cv_;
243 }
244
245 /// @brief return can_message_mutex_ member
246 ///
247 /// @return  return can_message_mutex_ member
248 std::mutex& can_bus_t::get_can_message_mutex()
249 {
250         return can_message_mutex_;
251 }
252
253 /// @brief Return first can_message_t on the queue
254 ///
255 /// @return a can_message_t
256 std::shared_ptr<message_t> can_bus_t::next_can_message()
257 {
258         std::shared_ptr<message_t> msg;
259
260         if(!can_message_q_.empty())
261         {
262                 msg = can_message_q_.front();
263                 can_message_q_.pop();
264                 std::string debug = msg->get_debug_message();
265                 AFB_DEBUG(debug.c_str());
266                 return msg;
267         }
268
269         return msg;
270 }
271
272 /// @brief Push a message_t into the queue
273 ///
274 /// @param[in] msg - the const reference message_t object to push into the queue
275 void can_bus_t::push_new_can_message(std::shared_ptr<message_t> msg)
276 {
277         can_message_q_.push(msg);
278 }
279
280 /// @brief Return first openxc_VehicleMessage on the queue
281 ///
282 /// @return a openxc_VehicleMessage containing a decoded can message
283 std::pair<int, openxc_VehicleMessage> can_bus_t::next_vehicle_message()
284 {
285         std::pair<int, openxc_VehicleMessage> v_msg;
286
287         if(! vehicle_message_q_.empty())
288         {
289                 v_msg = vehicle_message_q_.front();
290                 vehicle_message_q_.pop();
291                 AFB_DEBUG("next vehicle message poped");
292                 return v_msg;
293         }
294
295         return v_msg;
296 }
297
298 /// @brief Push a openxc_VehicleMessage into the queue
299 ///
300 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
301 void can_bus_t::push_new_vehicle_message(int subscription_id, const openxc_VehicleMessage& v_msg)
302 {
303         vehicle_message_q_.push(std::make_pair(subscription_id, v_msg));
304 }
305
306 /// @brief Fills the CAN device map member with value from device
307 /// mapping configuration file read at initialization.
308 void can_bus_t::set_can_devices()
309 {
310         if(conf_file_.check_conf())
311         {
312                 can_devices_mapping_ = conf_file_.get_devices_name();
313
314                 if(can_devices_mapping_.empty())
315                 {
316                         AFB_ERROR("No mapping found in config file: '%s'. Check it that it have a CANbus-mapping section.",
317                                 conf_file_.filepath().c_str());
318                 }
319         }
320 }
321
322
323 /// @brief Return the CAN device index from the map
324 /// map are sorted so index depend upon alphabetical sorting.
325 int can_bus_t::get_can_device_index(const std::string& bus_name) const
326 {
327         int i = 0;
328         for(const auto& d: can_devices_mapping_)
329         {
330                 if(d.first == bus_name)
331                         break;
332                 i++;
333         }
334         return i;
335 }
336
337 /// @brief Return CAN device name from a logical CAN device name gotten from
338 /// the signals.json description file which comes from a CAN databases file in
339 /// general.
340 const std::string can_bus_t::get_can_device_name(const std::string& id_name) const
341 {
342         std::string ret = "";
343         for(const auto& d: can_devices_mapping_)
344         {
345                 if(d.first == id_name)
346                 {
347                         ret = d.second;
348                         break;
349                 }
350         }
351         return ret;
352 }