Change subscribed signals search to check filters as well
[apps/low-level-can-service.git] / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <net/if.h>
19 #include <sys/socket.h>
20 #include <json-c/json.h>
21 #include <linux/can/raw.h>
22 #include <map>
23 #include <cerrno>
24 #include <vector>
25 #include <string>
26 #include <algorithm>
27
28 #include "can-bus.hpp"
29
30 #include "can-signals.hpp"
31 #include "can-decoder.hpp"
32 #include "../binding/application.hpp"
33 #include "../utils/signals.hpp"
34 #include "../utils/openxc-utils.hpp"
35
36 /// @brief Class constructor
37 ///
38 /// @param[in] conf_file - handle to the json configuration file.
39 can_bus_t::can_bus_t(utils::config_parser_t conf_file)
40         : conf_file_{conf_file}
41 {}
42
43 /// @brief Take a decoded message to determine if its value comply with the wanted
44 /// filtering values.
45 ///
46 /// @param[in] vehicle_message - A decoded message to analyze
47 /// @param[in] can_subscription - the subscription which will be notified depending
48 ///  on its filtering values. Filtering values are stored in the event_filtermember.
49 ///
50 /// @return True if the value is compliant with event filter values, false if not...
51 bool can_bus_t::apply_filter(const openxc_VehicleMessage& vehicle_message, std::shared_ptr<low_can_subscription_t> can_subscription)
52 {
53         bool send = false;
54         if(is_valid(vehicle_message))
55         {
56                 float min = can_subscription->get_min();
57                 float max = can_subscription->get_max();
58                 double value = get_numerical_from_DynamicField(vehicle_message);
59                 send = (value < min || value > max) ? false : true;
60         }
61         return send;
62 }
63
64 /// @brief Will make the decoding operation on a classic CAN message. It will not
65 /// handle CAN commands nor diagnostic messages that have their own method to get
66 /// this happens.
67 ///
68 /// It will add to the vehicle_message queue the decoded message and tell the event push
69 /// thread to process it.
70 ///
71 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
72 ///
73 /// @return How many signals has been decoded.
74 void can_bus_t::process_can_signals(const can_message_t& can_message, std::map<int, std::shared_ptr<low_can_subscription_t> >& s)
75 {
76         int subscription_id = can_message.get_sub_id();
77         openxc_DynamicField decoded_message;
78         openxc_VehicleMessage vehicle_message;
79
80         // First we have to found which can_signal_t it is
81         std::shared_ptr<low_can_subscription_t> sig = s[subscription_id];
82
83         if( s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
84         {
85                 bool send = true;
86                 decoded_message = decoder_t::translate_signal(*sig->get_can_signal(), can_message, &send);
87                 openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
88                 vehicle_message = build_VehicleMessage(s_message, can_message.get_timestamp());
89
90                 if(send && apply_filter(vehicle_message, sig))
91                 {
92                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
93                         push_new_vehicle_message(subscription_id, vehicle_message);
94                         AFB_DEBUG("%s CAN signals processed.",  sig->get_name().c_str());
95                 }
96         }
97 }
98
99 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
100 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
101 /// the event push thread to process it.
102 ///
103 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
104 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
105 ///
106 /// @return How many signals has been decoded.
107 void can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message, std::map<int, std::shared_ptr<low_can_subscription_t> >& s)
108 {
109         int subscription_id = can_message.get_sub_id();
110
111         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
112         if (can_message.get_timestamp())
113                 {vehicle_message.timestamp = can_message.get_timestamp();}
114         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
115                 s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
116         {
117                 if (apply_filter(vehicle_message, s[subscription_id]))
118                 {
119                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
120                         push_new_vehicle_message(subscription_id, vehicle_message);
121                         AFB_DEBUG("%s CAN signals processed.",  s[subscription_id]->get_name().c_str());
122                 }
123         }
124 }
125
126 /// @brief thread to decoding raw CAN messages.
127 ///
128 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
129 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
130 ///
131 /// It will take from the can_message_q_ queue the next can message to process then it search
132 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
133 ///  subscription has been made. Can message will be decoded using translate_signal that will pass it to the
134 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
135 ///  noopDecoder function that will operate on it.
136 ///
137 ///  TODO: make diagnostic messages parsing optionnal.
138 void can_bus_t::can_decode_message()
139 {
140         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
141
142         while(is_decoding_)
143         {
144                 std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
145                 new_can_message_cv_.wait(can_message_lock);
146                 while(!can_message_q_.empty())
147                 {
148                         const can_message_t can_message = next_can_message();
149                         can_message_lock.unlock();
150
151                         {
152                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
153                                 std::map<int, std::shared_ptr<low_can_subscription_t> >& s = sm.get_subscribed_signals();
154                                 if(application_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
155                                         {process_diagnostic_signals(application_t::instance().get_diagnostic_manager(), can_message, s);}
156                                 else
157                                         {process_can_signals(can_message, s);}
158                         }
159                         can_message_lock.lock();
160                 }
161         new_decoded_can_message_.notify_one();
162         can_message_lock.unlock();
163         }
164 }
165
166 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
167 /// which are events that has to be pushed.
168 void can_bus_t::can_event_push()
169 {
170         json_object* jo;
171         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
172
173         while(is_pushing_)
174         {
175                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
176                 new_decoded_can_message_.wait(decoded_can_message_lock);
177                 while(!vehicle_message_q_.empty())
178                 {
179                         std::pair<int, openxc_VehicleMessage> v_message = next_vehicle_message();
180                         decoded_can_message_lock.unlock();
181                         {
182                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
183                                 std::map<int, std::shared_ptr<low_can_subscription_t> >& s = sm.get_subscribed_signals();
184                                 if(s.find(v_message.first) != s.end() && afb_event_is_valid(s[v_message.first]->get_event()))
185                                 {
186                                         jo = json_object_new_object();
187                                         jsonify_vehicle(v_message.second, jo);
188                                         if(afb_event_push(s[v_message.first]->get_event(), jo) == 0)
189                                         {
190                                                 if(v_message.second.has_diagnostic_response)
191                                                         {on_no_clients(s[v_message.first], v_message.second.diagnostic_response.pid, s);}
192                                                 else
193                                                         {on_no_clients(s[v_message.first], s);}
194                                         }
195                                 }
196                         }
197                         decoded_can_message_lock.lock();
198                 }
199                 decoded_can_message_lock.unlock();
200         }
201 }
202
203 /// @brief Will initialize threads that will decode
204 ///  and push subscribed events.
205 void can_bus_t::start_threads()
206 {
207         is_decoding_ = true;
208         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
209         th_decoding_.detach();
210
211         is_pushing_ = true;
212         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
213         th_pushing_.detach();
214 }
215
216 /// @brief Will stop all threads holded by can_bus_t object
217 ///  which are decoding and pushing then will wait that's
218 /// they'll finish their job.
219 void can_bus_t::stop_threads()
220 {
221         is_decoding_ = false;
222         is_pushing_ = false;
223 }
224
225 /// @brief return new_can_message_cv_ member
226 ///
227 /// @return  return new_can_message_cv_ member
228 std::condition_variable& can_bus_t::get_new_can_message_cv()
229 {
230         return new_can_message_cv_;
231 }
232
233 /// @brief return can_message_mutex_ member
234 ///
235 /// @return  return can_message_mutex_ member
236 std::mutex& can_bus_t::get_can_message_mutex()
237 {
238         return can_message_mutex_;
239 }
240
241 /// @brief Return first can_message_t on the queue
242 ///
243 /// @return a can_message_t
244 const can_message_t can_bus_t::next_can_message()
245 {
246         can_message_t can_msg;
247
248         if(!can_message_q_.empty())
249         {
250                 can_msg = can_message_q_.front();
251                 can_message_q_.pop();
252                 AFB_DEBUG("Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", can_msg.get_id(), can_msg.get_length(),
253                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
254                 return can_msg;
255         }
256
257         return can_msg;
258 }
259
260 /// @brief Push a can_message_t into the queue
261 ///
262 /// @param[in] can_msg - the const reference can_message_t object to push into the queue
263 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
264 {
265         can_message_q_.push(can_msg);
266 }
267
268 /// @brief Return first openxc_VehicleMessage on the queue
269 ///
270 /// @return a openxc_VehicleMessage containing a decoded can message
271 std::pair<int, openxc_VehicleMessage> can_bus_t::next_vehicle_message()
272 {
273         std::pair<int, openxc_VehicleMessage> v_msg;
274
275         if(! vehicle_message_q_.empty())
276         {
277                 v_msg = vehicle_message_q_.front();
278                 vehicle_message_q_.pop();
279                 AFB_DEBUG("next vehicle message poped");
280                 return v_msg;
281         }
282
283         return v_msg;
284 }
285
286 /// @brief Push a openxc_VehicleMessage into the queue
287 ///
288 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
289 void can_bus_t::push_new_vehicle_message(int subscription_id, const openxc_VehicleMessage& v_msg)
290 {
291         vehicle_message_q_.push(std::make_pair(subscription_id, v_msg));
292 }
293
294 /// @brief Fills the CAN device map member with value from device
295 /// mapping configuration file read at initialization.
296 void can_bus_t::set_can_devices()
297 {
298         if(conf_file_.check_conf())
299         {
300                 can_devices_mapping_ = conf_file_.get_devices_name();
301
302                 if(can_devices_mapping_.empty())
303                 {
304                         AFB_ERROR("No mapping found in config file: '%s'. Check it that it have a CANbus-mapping section.",
305                                 conf_file_.filepath().c_str());
306                 }
307         }
308 }
309
310
311 /// @brief Return the CAN device index from the map
312 /// map are sorted so index depend upon alphabetical sorting.
313 int can_bus_t::get_can_device_index(const std::string& bus_name) const
314 {
315         int i = 0;
316         for(const auto& d: can_devices_mapping_)
317         {
318                 if(d.first == bus_name)
319                         break;
320                 i++;
321         }
322         return i;
323 }
324
325 /// @brief Return CAN device name from a logical CAN device name gotten from
326 /// the signals.json description file which comes from a CAN databases file in
327 /// general.
328 const std::string can_bus_t::get_can_device_name(const std::string& id_name) const
329 {
330         std::string ret = "";
331         for(const auto& d: can_devices_mapping_)
332         {
333                 if(d.first == id_name)
334                 {
335                         ret = d.second;
336                         break;
337                 }
338         }
339         return ret;
340 }