Update CMake logic making external libs global
[apps/agl-service-can-low-level.git] / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <map>
19 #include <cerrno>
20 #include <vector>
21 #include <string>
22 #include <fcntl.h>
23 #include <unistd.h>
24 #include <net/if.h>
25 #include <sys/ioctl.h>
26 #include <sys/socket.h>
27 #include <json-c/json.h>
28 #include <linux/can/raw.h>
29
30 #include "can-bus.hpp"
31
32 #include "can-signals.hpp"
33 #include "can-decoder.hpp"
34 #include "../configuration.hpp"
35 #include "../utils/signals.hpp"
36 #include "../utils/openxc-utils.hpp"
37
38 extern "C"
39 {
40         #include <afb/afb-binding.h>
41 }
42
43 /// @brief Class constructor
44 ///
45 /// @param[in] conf_file - handle to the json configuration file.
46 can_bus_t::can_bus_t(int conf_file)
47         : conf_file_{conf_file}
48 {
49 }
50
51 std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;
52
53 /// @brief Will make the decoding operation on a classic CAN message. It will not
54 /// handle CAN commands nor diagnostic messages that have their own method to get
55 /// this happens.
56 ///
57 /// It will add to the vehicle_message queue the decoded message and tell the event push
58 /// thread to process it.
59 ///
60 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
61 ///
62 /// @return How many signals has been decoded.
63 int can_bus_t::process_can_signals(can_message_t& can_message)
64 {
65         int processed_signals = 0;
66         std::vector <can_signal_t*> signals;
67         openxc_DynamicField search_key, decoded_message;
68         openxc_VehicleMessage vehicle_message;
69
70         // First we have to found which can_signal_t it is
71         search_key = build_DynamicField((double)can_message.get_id());
72         configuration_t::instance().find_can_signals(search_key, signals);
73
74         // Decoding the message ! Don't kill the messenger !
75         for(auto& sig : signals)
76         {
77                 std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
78                 std::map<std::string, struct afb_event>& s = get_subscribed_signals();
79
80                 // DEBUG message to make easier debugger STL containers...
81                 //DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
82                 //DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
83                 //DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
84                 //DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name));
85                 if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
86                 {
87                         decoded_message = decoder_t::translateSignal(*sig, can_message, configuration_t::instance().get_can_signals());
88
89                         openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
90                         vehicle_message = build_VehicleMessage(s_message);
91
92                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
93                         push_new_vehicle_message(vehicle_message);
94                         processed_signals++;
95                 }
96         }
97
98         DEBUG(binder_interface, "process_can_signals: %d/%d CAN signals processed.", processed_signals, (int)signals.size());
99         return processed_signals;
100 }
101
102 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
103 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
104 /// the event push thread to process it.
105 ///
106 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
107 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
108 ///
109 /// @return How many signals has been decoded.
110 int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
111 {
112         int processed_signals = 0;
113
114         std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
115         std::map<std::string, struct afb_event>& s = get_subscribed_signals();
116
117         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
118         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
119                 (s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
120         {
121                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
122                 push_new_vehicle_message(vehicle_message);
123                 processed_signals++;
124         }
125
126         return processed_signals;
127 }
128
129 /// @brief thread to decoding raw CAN messages.
130 ///
131 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
132 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
133 ///
134 /// It will take from the can_message_q_ queue the next can message to process then it search
135 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
136 ///  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
137 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
138 ///  noopDecoder function that will operate on it.
139 ///
140 ///  TODO: make diagnostic messages parsing optionnal.
141 void can_bus_t::can_decode_message()
142 {
143         can_message_t can_message;
144
145         while(is_decoding_)
146         {
147                 {
148                         std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
149                         new_can_message_cv_.wait(can_message_lock);
150                         while(!can_message_q_.empty())
151                         {
152                                 can_message = next_can_message();
153
154                                 if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
155                                         process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
156                                 else
157                                         process_can_signals(can_message);
158                         }
159                 }
160                 new_decoded_can_message_.notify_one();
161         }
162 }
163
164 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
165 /// which are events that has to be pushed.
166 void can_bus_t::can_event_push()
167 {
168         openxc_VehicleMessage v_message;
169         openxc_SimpleMessage s_message;
170         json_object* jo;
171
172         while(is_pushing_)
173         {
174                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
175                 new_decoded_can_message_.wait(decoded_can_message_lock);
176                 while(!vehicle_message_q_.empty())
177                 {
178                         v_message = next_vehicle_message();
179
180                         s_message = get_simple_message(v_message);
181                         {
182                                 std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
183                                 std::map<std::string, struct afb_event>& s = get_subscribed_signals();
184                                 if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
185                                 {
186                                         jo = json_object_new_object();
187                                         jsonify_simple(s_message, jo);
188                                         if(afb_event_push(s[std::string(s_message.name)], jo) == 0)
189                                                 on_no_clients(std::string(s_message.name));
190                                 }
191                         }
192                 }
193         }
194 }
195
196 /// @brief Will initialize threads that will decode
197 ///  and push subscribed events.
198 void can_bus_t::start_threads()
199 {
200         is_decoding_ = true;
201         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
202         if(!th_decoding_.joinable())
203                 is_decoding_ = false;
204
205         is_pushing_ = true;
206         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
207         if(!th_pushing_.joinable())
208                 is_pushing_ = false;
209 }
210
211 /// @brief Will stop all threads holded by can_bus_t object
212 ///  which are decoding and pushing then will wait that's
213 /// they'll finish their job.
214 void can_bus_t::stop_threads()
215 {
216         is_decoding_ = false;
217         is_pushing_ = false;
218 }
219
220 /// @brief Will initialize can_bus_dev_t objects after reading
221 /// the configuration file passed in the constructor. All CAN buses
222 /// Initialized here will be added to a vector holding them for
223 /// inventory and later access.
224 ///
225 /// That will initialize CAN socket reading too using a new thread.
226 ///
227 /// @return 0 if ok, other if not.
228 int can_bus_t::init_can_dev()
229 {
230         std::vector<std::string> devices_name;
231         int i = 0;
232         size_t t;
233
234         devices_name = read_conf();
235
236         if (! devices_name.empty())
237         {
238                 t = devices_name.size();
239
240                 for(const auto& device : devices_name)
241                 {
242                         can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
243                         if (can_bus_t::can_devices_[device]->open() == 0)
244                         {
245                                 DEBUG(binder_interface, "Start reading thread");
246                                 NOTICE(binder_interface, "%s device opened and reading", device.c_str());
247                                 can_bus_t::can_devices_[device]->start_reading(*this);
248                                 i++;
249                         }
250                         else
251                         {
252                                 ERROR(binder_interface, "Can't open device %s", device.c_str());
253                                 return 1;
254                         }
255                 }
256
257                 NOTICE(binder_interface, "Initialized %d/%d can bus device(s)", i, (int)t);
258                 return 0;
259         }
260         ERROR(binder_interface, "init_can_dev: Error at CAN device initialization. No devices read from configuration file. Did you specify canbus JSON object ?");
261         return 1;
262 }
263
264 /// @brief read the conf_file_ and will parse json objects
265 /// in it searching for canbus objects devices name.
266 ///
267 /// @return Vector of can bus device name string.
268 std::vector<std::string> can_bus_t::read_conf()
269 {
270         std::vector<std::string> ret;
271         json_object *jo, *canbus;
272         int n, i;
273         const char* taxi;
274
275         FILE *fd = fdopen(conf_file_, "r");
276         if (fd)
277         {
278                 std::string fd_conf_content;
279                 std::fseek(fd, 0, SEEK_END);
280                 fd_conf_content.resize(std::ftell(fd));
281                 std::rewind(fd);
282                 std::fread(&fd_conf_content[0], 1, fd_conf_content.size(), fd);
283                 std::fclose(fd);
284
285                 DEBUG(binder_interface, "Configuration file content : %s", fd_conf_content.c_str());
286                 jo = json_tokener_parse(fd_conf_content.c_str());
287
288                 if (jo == NULL || !json_object_object_get_ex(jo, "canbus", &canbus))
289                 {
290                         ERROR(binder_interface, "Can't find canbus node in the configuration file. Please review it.");
291                         ret.clear();
292                 }
293                 else if (json_object_get_type(canbus) != json_type_array)
294                 {
295                         taxi = json_object_get_string(canbus);
296                         DEBUG(binder_interface, "Can bus found: %s", taxi);
297                         ret.push_back(std::string(taxi));
298                 }
299                 else
300                 {
301                         n = json_object_array_length(canbus);
302                         for (i = 0 ; i < n ; i++)
303                                 ret.push_back(json_object_get_string(json_object_array_get_idx(canbus, i)));
304                 }
305                 return ret;
306         }
307         ERROR(binder_interface, "Problem at reading the conf file");
308         ret.clear();
309         return ret;
310 }
311
312 /// @brief return new_can_message_cv_ member
313 ///
314 /// @return  return new_can_message_cv_ member
315 std::condition_variable& can_bus_t::get_new_can_message_cv()
316 {
317         return new_can_message_cv_;
318 }
319
320 /// @brief return can_message_mutex_ member
321 ///
322 /// @return  return can_message_mutex_ member
323 std::mutex& can_bus_t::get_can_message_mutex()
324 {
325         return can_message_mutex_;
326 }
327
328 /// @brief Return first can_message_t on the queue
329 ///
330 /// @return a can_message_t
331 can_message_t can_bus_t::next_can_message()
332 {
333         can_message_t can_msg;
334
335         if(!can_message_q_.empty())
336         {
337                 can_msg = can_message_q_.front();
338                 can_message_q_.pop();
339                 DEBUG(binder_interface, "next_can_message: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", can_msg.get_id(), can_msg.get_length(),
340                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
341                 return can_msg;
342         }
343
344         return can_msg;
345 }
346
347 /// @brief Push a can_message_t into the queue
348 ///
349 /// @param[in] can_msg - the const reference can_message_t object to push into the queue
350 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
351 {
352         can_message_q_.push(can_msg);
353 }
354
355 /// @brief Return first openxc_VehicleMessage on the queue
356 ///
357 /// @return a openxc_VehicleMessage containing a decoded can message
358 openxc_VehicleMessage can_bus_t::next_vehicle_message()
359 {
360         openxc_VehicleMessage v_msg;
361
362         if(! vehicle_message_q_.empty())
363         {
364                 v_msg = vehicle_message_q_.front();
365                 vehicle_message_q_.pop();
366                 DEBUG(binder_interface, "next_vehicle_message: next vehicle message poped");
367                 return v_msg;
368         }
369
370         return v_msg;
371 }
372
373 /// @brief Push a openxc_VehicleMessage into the queue
374 ///
375 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
376 void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
377 {
378         vehicle_message_q_.push(v_msg);
379 }
380
381 /// @brief Return a map with the can_bus_dev_t initialized
382 ///
383 /// @return map can_bus_dev_m_ map
384 const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
385 {
386         return can_bus_t::can_devices_;
387 }
388
389 /// @brief Return the shared pointer on the can_bus_dev_t initialized 
390 /// with device_name "bus"
391 ///
392 /// @param[in] bus - CAN bus device name to retrieve.
393 ///
394 /// @return A shared pointer on an object can_bus_dev_t
395 std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
396 {
397         return can_bus_t::can_devices_[bus];
398 }