all: format typo
[apps/agl-service-can-low-level.git] / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2018 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <net/if.h>
19 #include <sys/socket.h>
20 #include <json-c/json.h>
21 #include <linux/can/raw.h>
22 #include <map>
23 #include <cerrno>
24 #include <vector>
25 #include <string>
26 #include <algorithm>
27
28 #include "can-bus.hpp"
29
30 #include "signals.hpp"
31 #include "can-decoder.hpp"
32 #include "../binding/application.hpp"
33 #include "../utils/signals.hpp"
34 #include "../utils/openxc-utils.hpp"
35
36 /// @brief Class destructor
37 ///
38 /// @param[in] conf_file - Stop threads and unlock them to correctly finish them
39 /// even without any activity on the CAN bus.
40 can_bus_t::~can_bus_t()
41 {
42         stop_threads();
43         new_can_message_cv_.notify_one();
44 }
45
46 /// @brief Class constructor
47 can_bus_t::can_bus_t()
48 {}
49
50 /// @brief Fills the CAN device map member with value from device
51 ///
52 /// @param[in] mapping configuration section.
53 void can_bus_t::set_can_devices(json_object *mapping)
54 {
55         if (! mapping)
56         {
57                 AFB_ERROR("Can't initialize CAN buses with this empty mapping.");
58                 return;
59         }
60
61         struct json_object_iterator it = json_object_iter_begin(mapping);
62         struct json_object_iterator end = json_object_iter_end(mapping);
63         while (! json_object_iter_equal(&it, &end)) {
64                 can_devices_mapping_.push_back(std::make_pair(
65                         json_object_iter_peek_name(&it),
66                         json_object_get_string(json_object_iter_peek_value(&it))
67                         ));
68                 json_object_iter_next(&it);
69         }
70 }
71
72 /// @brief Take a decoded message to determine if its value complies with the desired
73 /// filters.
74 ///
75 /// @param[in] vehicle_message - The decoded message to be analyzed.
76 /// @param[in] can_subscription - the subscription which will be notified depending
77 ///  on its filtering values. Filtering values are stored in the event_filtermember.
78 ///
79 /// @return True if the value is compliant with event filter values, false if not...
80 bool can_bus_t::apply_filter(const openxc_VehicleMessage& vehicle_message, std::shared_ptr<low_can_subscription_t> can_subscription)
81 {
82         bool send = false;
83         if(is_valid(vehicle_message))
84         {
85                 float min = can_subscription->get_min();
86                 float max = can_subscription->get_max();
87                 double value = get_numerical_from_DynamicField(vehicle_message);
88                 send = (value < min || value > max) ? false : true;
89         }
90         return send;
91 }
92
93 /// @brief Will make the decoding operation on a classic CAN message. It will not
94 /// handle CAN commands nor diagnostic messages that have their own method to get
95 /// this happens.
96 ///
97 /// It will add to the vehicle_message queue the decoded message and tell the event push
98 /// thread to process it.
99 ///
100 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
101 ///
102 /// @return How many signals has been decoded.
103 void can_bus_t::process_signals(std::shared_ptr<message_t> message, map_subscription& s)
104 {
105         int subscription_id = message->get_sub_id();
106         openxc_DynamicField decoded_message;
107         openxc_VehicleMessage vehicle_message;
108
109         if( s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
110         {
111                 bool send = true;
112                 // First we have to found which signal_t it is
113                 std::shared_ptr<low_can_subscription_t> sig = s[subscription_id];
114
115                 decoded_message = decoder_t::translate_signal(*sig->get_signal(), message, &send);
116                 openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
117                 vehicle_message = build_VehicleMessage(s_message, message->get_timestamp());
118
119                 if(send && apply_filter(vehicle_message, sig))
120                 {
121                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
122                         push_new_vehicle_message(subscription_id, vehicle_message);
123                         AFB_DEBUG("%s CAN signals processed.", sig->get_name().c_str());
124                 }
125         }
126 }
127
128 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
129 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
130 /// the event push thread to process it.
131 ///
132 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
133 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
134 ///
135 /// @return How many signals has been decoded.
136 void can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, std::shared_ptr<message_t> message, map_subscription& s)
137 {
138         int subscription_id = message->get_sub_id();
139
140         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(message);
141         if (message->get_timestamp())
142                 vehicle_message.timestamp = message->get_timestamp();
143         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
144                 s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
145         {
146                 if (apply_filter(vehicle_message, s[subscription_id]))
147                 {
148                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
149                         push_new_vehicle_message(subscription_id, vehicle_message);
150                         AFB_DEBUG("%s CAN signals processed.",  s[subscription_id]->get_name().c_str());
151                 }
152         }
153 }
154
155 /// @brief thread to decoding raw CAN messages.
156 ///
157 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
158 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
159 ///
160 /// It will take from the can_message_q_ queue the next can message to process then it search
161 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
162 ///  subscription has been made. Can message will be decoded using translate_signal that will pass it to the
163 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
164 ///  noopDecoder function that will operate on it.
165 ///
166 ///  TODO: make diagnostic messages parsing optionnal.
167 void can_bus_t::can_decode_message()
168 {
169         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
170
171         while(is_decoding_)
172         {
173                 std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
174                 new_can_message_cv_.wait(can_message_lock);
175                 while(!can_message_q_.empty())
176                 {
177                         std::shared_ptr<message_t>  message = next_can_message();
178                         can_message_lock.unlock();
179
180                         {
181                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
182                                 map_subscription& s = sm.get_subscribed_signals();
183                                 if(application_t::instance().get_diagnostic_manager().is_diagnostic_response(message))
184                                         process_diagnostic_signals(application_t::instance().get_diagnostic_manager(), message, s);
185                                 else
186                                         process_signals(message, s);
187                         }
188                         can_message_lock.lock();
189                 }
190                 new_decoded_can_message_.notify_one();
191                 can_message_lock.unlock();
192         }
193 }
194
195 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
196 /// which are events that has to be pushed.
197 void can_bus_t::can_event_push()
198 {
199         json_object* jo;
200         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
201
202         while(is_pushing_)
203         {
204                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
205                 new_decoded_can_message_.wait(decoded_can_message_lock);
206                 while(!vehicle_message_q_.empty())
207                 {
208                         std::pair<int, openxc_VehicleMessage> v_message = next_vehicle_message();
209                         decoded_can_message_lock.unlock();
210                         {
211                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
212                                 map_subscription& s = sm.get_subscribed_signals();
213                                 if(s.find(v_message.first) != s.end() && afb_event_is_valid(s[v_message.first]->get_event()))
214                                 {
215                                         jo = json_object_new_object();
216                                         jsonify_vehicle(v_message.second, jo);
217                                         if(afb_event_push(s[v_message.first]->get_event(), jo) == 0)
218                                         {
219                                                 if(v_message.second.has_diagnostic_response)
220                                                         on_no_clients(s[v_message.first], v_message.second.diagnostic_response.pid, s);
221                                                 else
222                                                         on_no_clients(s[v_message.first], s);
223                                         }
224                                 }
225                         }
226                         decoded_can_message_lock.lock();
227                 }
228                 decoded_can_message_lock.unlock();
229         }
230 }
231
232 /// @brief Will initialize threads that will decode
233 ///  and push subscribed events.
234 void can_bus_t::start_threads()
235 {
236         is_decoding_ = true;
237         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
238         th_decoding_.detach();
239
240         is_pushing_ = true;
241         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
242         th_pushing_.detach();
243 }
244
245 /// @brief Will stop all threads holded by can_bus_t object
246 ///  which are decoding and pushing then will wait that's
247 /// they'll finish their job.
248 void can_bus_t::stop_threads()
249 {
250         is_decoding_ = false;
251         is_pushing_ = false;
252 }
253
254 /// @brief return new_can_message_cv_ member
255 ///
256 /// @return  return new_can_message_cv_ member
257 std::condition_variable& can_bus_t::get_new_can_message_cv()
258 {
259         return new_can_message_cv_;
260 }
261
262 /// @brief return can_message_mutex_ member
263 ///
264 /// @return  return can_message_mutex_ member
265 std::mutex& can_bus_t::get_can_message_mutex()
266 {
267         return can_message_mutex_;
268 }
269
270 /// @brief Return first can_message_t on the queue
271 ///
272 /// @return a can_message_t
273 std::shared_ptr<message_t> can_bus_t::next_can_message()
274 {
275         std::shared_ptr<message_t> msg;
276
277         if(!can_message_q_.empty())
278         {
279                 msg = can_message_q_.front();
280                 can_message_q_.pop();
281                 std::string debug = msg->get_debug_message();
282                 AFB_DEBUG(debug.c_str());
283                 return msg;
284         }
285
286         return msg;
287 }
288
289 /// @brief Push a message_t into the queue
290 ///
291 /// @param[in] msg - the const reference message_t object to push into the queue
292 void can_bus_t::push_new_can_message(std::shared_ptr<message_t> msg)
293 {
294         can_message_q_.push(msg);
295 }
296
297 /// @brief Return first openxc_VehicleMessage on the queue
298 ///
299 /// @return a openxc_VehicleMessage containing a decoded can message
300 std::pair<int, openxc_VehicleMessage> can_bus_t::next_vehicle_message()
301 {
302         std::pair<int, openxc_VehicleMessage> v_msg;
303
304         if(! vehicle_message_q_.empty())
305         {
306                 v_msg = vehicle_message_q_.front();
307                 vehicle_message_q_.pop();
308                 AFB_DEBUG("next vehicle message poped");
309                 return v_msg;
310         }
311
312         return v_msg;
313 }
314
315 /// @brief Push a openxc_VehicleMessage into the queue
316 ///
317 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
318 void can_bus_t::push_new_vehicle_message(int subscription_id, const openxc_VehicleMessage& v_msg)
319 {
320         vehicle_message_q_.push(std::make_pair(subscription_id, v_msg));
321 }
322
323 /// @brief Return the CAN device index from the map
324 /// map are sorted so index depend upon alphabetical sorting.
325 int can_bus_t::get_can_device_index(const std::string& bus_name) const
326 {
327         int i = 0;
328         for(const auto& d: can_devices_mapping_)
329         {
330                 if(d.first == bus_name)
331                         break;
332                 i++;
333         }
334         return i;
335 }
336
337 /// @brief Return CAN device name from a logical CAN device name gotten from
338 /// the signals.json description file which comes from a CAN databases file in
339 /// general.
340 const std::string can_bus_t::get_can_device_name(const std::string& id_name) const
341 {
342         std::string ret = "";
343         for(const auto& d: can_devices_mapping_)
344         {
345                 if(d.first == id_name)
346                 {
347                         ret = d.second;
348                         break;
349                 }
350         }
351         return ret;
352 }