
CAN signaling with AGL
framework

Performances Analysis

Version 2.0

September 2016

CAN signaling with AGL framework

Abstract

This document presents result obtained when using the AGL-2.0 framework for
signaling and propagating event delivered by the CAN bus.

Table of contents

1.Description of the test..3
1.1.The data used for the test...3
1.2.Tested boards..3
1.3.The test...4
1.4.Data processing flow..5

2.Results of the test..6
2.1.The raw results..6
2.2.The deduced results...6
2.3.About results..6

2.3.1.Cost of transmission...6
2.3.2.No measure for D-Bus on PORTER..7
2.3.3.No measure of interpreting the data...7

3.Conclusions and perspectives..7
3.1.Lessons learnt:..7
3.2.ToBeDone to improve performances:..8

Document revisions

Date Version Designation Author

15 Sept. 2016 1.0 Initial release J. Bollo

16 Sept. 2016 1.1 Review Fulup

16 Sept. 2016 1.2 Adde CBOR J. Bollo

20 Sept. 2016 2.0 Review S.Desneux

Version 2.0 September 2016 – 2 / 8 –

CAN signaling with AGL framework

1. Description of the test

1.1. The data used for the test

We received from Cogent1 the file run11_can.pcap. This file is a capture of CAN bus
encapsulated in UDP frames. Precisely, it is a PCAP2 file that contains timestamped
ETHERNET frames. The data are encapsulated this way: CAN/UDP/IPV4/ETH/PCAP.

This file is a real capture made in Detroit area on a Cadillac SRX SUV 2015 that is the
Renesas Skyline vehicles designated SRX3.

Its characteristics are:

CHARACTERISTIC VALUE UNIT

total count of events 9 971 538 events

date of first event 19:06:22 HH:MM:SS

date of last event 19:19:34 HH:MM:SS

duration
00:13:12 HH:MM:SS

792 seconds

event rate 12 586 events per second

UDP content size 199 430 760 bytes

UDP content rate 251 731 bytes per second

In detail, this trace contains 340 different CAN ids.

Note: this CAN trace is representative of an ADAS profile. A typical IVI message trace
would require significantly less bandwith. Typical trace as extracted from an OBD2 end
point are usualy under 500msg/s.

1.2. Tested boards

Two boards were used during this test:

• PORTER with 2 cores at 1.5GHz
• SALVATOR with 4 cores at 1.5GHz (the 4 big cores).

1 http://www.cogentembedded.com/
2 pcap files are linked to the project TCPDUMP: http://www.tcpdump.org/
3 https://www2.renesas.eu/videos/america.html?p=80&f=views

Version 2.0 September 2016 – 3 / 8 –

CAN signaling with AGL framework

1.3. The test

A basic injector programe was implemented to replay CAN messages at real
acquisition rate. The injector sends CAN messages as UDP frames from an external
computer to Renesas boards. Mesurement performance is done directly on Renesas
boards with “top” command.

On target boards CAN messages are received as UDP frames through a standard AGL
binder that simulate a HAL(hardware abstraction layer) responsible of decoding binary
CAN messages. When one or more subscribers exist, the received CAN frames are
converted to JSON events and sent to subscribers using standard AGL-2.0 framework
event model.

We evaluated 4 kinds of subscriber connection:

1. HAL only without any subscriber.

2. Subscriber and HAL bindings share a single binder process.

3. Subscriber and HAL bindings use two separated binders processed connected by
websocket.

4. Subscriber and the HAL binder processes are linked using DBUS.

For all cases, we measured the overall CPU load.

The event sent are JSON representation of the received CAN frames. The example
below is the first event of the trace:

{"event":"udpcan\/1305","data":{"id":1304,"data":[48,59,230,95,28,245,255,255]},"jtype":"afb-event"}

The count of data sent is very important. An accurate estimation of the characteristics
of the flow for the websocket, including internal protocol (but not TCP data), is:

CHARACTERISTIC VALUE UNIT

Websocket content size 1 120 331 014 bytes

Websocket content rate 1 414 135 bytes per second

Version 2.0 September 2016 – 4 / 8 –

CAN signaling with AGL framework

1.4. Data processing flow

This figure describes the main parts of the processing and shows how they are linked
together. This will allow to deduce needs of operations.

SUBSCRIBER Receive Create Serialize
+ send

Receive
+deserialize

D-Bus

None (case 1) Yes

Shared binder (case 2) Yes Yes

Websocket (case 3) Yes Yes Yes Yes

D-Bus (case 4) Yes Yes Yes Yes Yes

Version 2.0 September 2016 – 5 / 8 –

receive create
receive

+ deserialize
serialize
+ send

D-Bus

legend

Socket
Same process

clientserver

process

operation

External host emitter

CAN signaling with AGL framework

2. Results of the test

2.1. The raw results

Here after the table of measured loads when processing reference CAN trace. The load
is the overall CPU load (100% when all CPU are fully busy) and for all processes.

SUBSCRIBER PROCESS PORTER SALVATOR

No subscriber, receive only Server 18% 4.75%

Same process Server 25.5% 6.5%

Linked with Websocket
Server 37.5%

}70%
10.75%

} 20.75
%Client 32.5% 10%

Linked with D-Bus

Server

OVERLOADED

14.5%

} 51.5%Client 16%

D-Bus 21%

2.2. The deduced results

From the data processing flow, we deduce load generated by each action as decribe in
previous data processing flow diagram.

OPERATION PORTER SALVATOR

Receive 18% 4.75%

Create 7.5% 1.75%

Serialize + send 12%
} 44.5%

4.25%
} 14.25%

Receive + deserialize 32.5% 10%

DBUS4 ? 30.75%

2.3. About results

2.3.1. Cost of transmission
The first operation, receiving raw CAN data. This initial receiving step already
consumes a significant amount of CPU. In our testing scenario the reception is done
using CAN/UDP to simulate a real device CAN bus acquisition. Cogent CAN sample
trace payload is fixed at 8 bytes which might not be the case with a real CAN device.

4 123 = 84 + (58-43) + (64-40)

Version 2.0 September 2016 – 6 / 8 –

CAN signaling with AGL framework

In fact when connected to a real CAN bus, we may expect a small decrease of this
load. This because with a real CAN device ETHERNET+IP+UDP as well as netfiltering
would not used.

Nevertheless and independantly of transmission mode, receiving such an amount of
data consume ressources. On PORTER, receiving action represent already 1/5th of
available CPU power, on SALVATOR it is better but nevertheless uses arround 1/20th
of CPU ressources.

Tests done show that moving from binary CAN messages to JSON simple serialisation
mode as currently used by AGL-2.0 framework increase the size of data by a ratio of
5.6; which obviously increase to a significant level the global cost requirer to move
such a huge amount of data from one binder to an other. Total cost of
serialisation/deserialisation + transmition on Porter represents about halt of avaliable
CPU power (44.5%). On Salvador load is obviously much smaller but nevertheless
remains significant at 14.25%.

2.3.2. No measure for D-Bus on PORTER
During D-Bus test, Porter board was overloaded and not all events were delivered by
D-Bus that closes its connections when saturated.

2.3.3. No measure of interpreting the data
Current tests don’t evaluates the cost of understand and processing CAN
events/signals. We only evaluates the cost of events creation and transmission.

3. Conclusions and perspectives

3.1. Lessons learnt:

• SALVATOR is a significant improvement over PORTER
• D-BUS is not the right tool for transmitting such an amount of data
• The cost of AGL framework events model remains light when bindings

share a common process, but increase when binding are in different
processes.

On SALVATOR, when both receiving+consuming bindings share the same process the
total load including receiving data represents 6.5% of total CPU power, which leave
over 90% of CPUs to applications.

Version 2.0 September 2016 – 7 / 8 –

CAN signaling with AGL framework

3.2. ToBeDone to improve performances:

They are different obvious places where event model performances could/should be
improved.

Reduce the size of the transmited data and avoid conversion to/from
string of numbers:

Current messages exchanged are somehow verbose and include
redundancies. Improving these messages should be possible and would
improve performances.

Current version of AGL-2.0 framework relies on a simple JSON
serialisation. It exists more advanced format as BJSON5, BSON6,
MessagePack7 or CBOR8 that could reduce significantly the size of
transmitting messages.

Provide more efficient data handling:

AGL-2.0 relies on the library json-c to handle events and requests both
internally and externally. This library has very good features but is not
optimised for our usage. One option would be to improve library json-c
and an other option would be to swich to an other library.

Use a faster transport mechanism:

Websocket is clearly faster than DBUS. Nevertheless some other
technologies based on zero-copy model might be even faster and would
deserve more investigations.

Lower the count of messages:

What ever object model will be used transmitting such a huge amount of
data will consume a lot of ressources. The only valid option is to reduce
the total amount of transmitted messages.

A model to implement filtering and processing of messages at the lower
possible layer should be described and implemented. In best case this
filtering should be delegated to hardware in worse case it should end to
HAL layer.

5 http://bjson.org/
6 http://bsonspec.org/
7 http://msgpack.org/
8 http://cbor.io/ and https://tools.ietf.org/rfc/rfc7049.txt

Version 2.0 September 2016 – 8 / 8 –

http://cbor.io/

	1. Description of the test
	1.1. The data used for the test
	1.2. Tested boards
	1.3. The test
	1.4. Data processing flow

	2. Results of the test
	2.1. The raw results
	2.2. The deduced results
	2.3. About results
	2.3.1. Cost of transmission
	2.3.2. No measure for D-Bus on PORTER
	2.3.3. No measure of interpreting the data

	3. Conclusions and perspectives
	3.1. Lessons learnt:
	3.2. ToBeDone to improve performances:

