c4be28fa205f01eb26f40226419fecb103db7830
[apps/low-level-can-service.git] / CAN-binder / low-can-binding / diagnostic / diagnostic-manager.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <systemd/sd-event.h>
19 #include <algorithm>
20 #include <string.h>
21
22 #include "diagnostic-manager.hpp"
23
24 #include "../utils/openxc-utils.hpp"
25 #include "../utils/signals.hpp"
26 #include "../binding/configuration.hpp"
27
28 #define MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ 10
29 #define MAX_SIMULTANEOUS_DIAG_REQUESTS 50
30 // There are only 8 slots of in flight diagnostic requests
31 #define MAX_SIMULTANEOUS_IN_FLIGHT_REQUESTS 8
32 #define TIMERFD_ACCURACY 0
33 #define MICRO 1000000
34
35 diagnostic_manager_t::diagnostic_manager_t()
36         : initialized_{false}
37 {}
38
39 /// @brief Diagnostic manager isn't initialized at launch but after
40 ///  CAN bus devices initialization. For the moment, it is only possible
41 ///  to have 1 diagnostic bus which are the first bus declared in the JSON
42 ///  description file. Configuration instance will return it.
43 ///
44 /// this will initialize DiagnosticShims and cancel all active requests 
45 ///  if there are any.
46 bool diagnostic_manager_t::initialize()
47 {
48         // Mandatory to set the bus before intialize shims.
49         bus_ = configuration_t::instance().get_diagnostic_bus();
50
51         init_diagnostic_shims();
52         event_source_ = nullptr;
53         reset();
54
55         initialized_ = true;
56         DEBUG(binder_interface, "%s: Diagnostic Manager initialized", __FUNCTION__);
57         return initialized_;
58 }
59
60 void diagnostic_manager_t::read_socket()
61 {
62         can_message_t msg;
63         can_bus_t& cbm = configuration_t::instance().get_can_bus_manager();
64         socket_ >> msg;
65         std::lock_guard<std::mutex> can_message_lock(cbm.get_can_message_mutex());
66         { cbm.push_new_can_message(msg); }
67         cbm.get_new_can_message_cv().notify_one();
68 }
69
70 utils::socketcan_bcm_t& diagnostic_manager_t::get_socket()
71 {
72         return socket_;
73 }
74
75 /// @brief initialize shims used by UDS lib and set initialized_ to true.
76 ///  It is needed before used the diagnostic manager fully because shims are
77 ///  required by most member functions.
78 void diagnostic_manager_t::init_diagnostic_shims()
79 {
80         shims_ = diagnostic_init_shims(shims_logger, shims_send, NULL);
81         DEBUG(binder_interface, "%s: Shims initialized", __FUNCTION__);
82 }
83
84 /// @brief Force cleanup all active requests.
85 void diagnostic_manager_t::reset()
86 {
87         DEBUG(binder_interface, "%s: Clearing existing diagnostic requests", __FUNCTION__);
88         cleanup_active_requests(true);
89 }
90
91 /// @brief Adds 8 RX_SETUP jobs to the BCM rx_socket_ then diagnotic manager
92 ///  listens on CAN ID range 7E8 - 7EF affected to the OBD2 communications.
93 ///
94 /// @return -1 or negative value on error, 0 if ok.
95 int diagnostic_manager_t::add_rx_filter(uint32_t can_id)
96 {
97         // Make sure that socket has been opened.
98         if(! socket_)
99                 socket_.open(bus_);
100
101         struct utils::simple_bcm_msg bcm_msg;
102         memset(&bcm_msg.msg_head, 0, sizeof(bcm_msg.msg_head));
103
104         const struct timeval freq =  recurring_requests_.back()->get_timeout_clock().get_timeval_from_period();
105
106         bcm_msg.msg_head.opcode  = RX_SETUP;
107         bcm_msg.msg_head.flags = SETTIMER|RX_FILTER_ID;
108         bcm_msg.msg_head.ival2.tv_sec = freq.tv_sec;
109         bcm_msg.msg_head.ival2.tv_usec = freq.tv_usec;
110
111         // If it isn't an OBD2 CAN ID then just add a simple RX_SETUP job
112         if(can_id != OBD2_FUNCTIONAL_BROADCAST_ID) 
113         {
114                 bcm_msg.msg_head.can_id  = can_id;
115
116                 socket_ << bcm_msg;
117                         if(! socket_)
118                                 return -1;
119         }
120         else
121         {
122                 for(uint8_t i = 0; i < 8; i++)
123                 {
124                         can_id  =  OBD2_FUNCTIONAL_RESPONSE_START + i;
125                         bcm_msg.msg_head.can_id  = can_id;
126
127                         socket_ << bcm_msg;
128                         if(! socket_)
129                                 return -1;
130                 }
131         }
132
133         return 0;
134 }
135
136 /// @brief send function use by diagnostic library. Only one bus used for now
137 ///  so diagnostic request is sent using the default diagnostic bus not matter of
138 ///  which is specified in the diagnostic message definition.
139 ///
140 /// @param[in] arbitration_id - CAN arbitration ID to use when send message. OBD2 broadcast ID
141 ///  is 0x7DF by example.
142 /// @param[in] data - The data payload for the message. NULL is valid if size is also 0.
143 /// @param[in] size - The size of the data payload, in bytes.
144 ///
145 /// @return true if the CAN message was sent successfully. 
146 bool diagnostic_manager_t::shims_send(const uint32_t arbitration_id, const uint8_t* data, const uint8_t size)
147 {
148         diagnostic_manager_t& dm = configuration_t::instance().get_diagnostic_manager();
149         active_diagnostic_request_t* current_adr = dm.get_last_recurring_requests();
150         utils::socketcan_bcm_t& tx_socket = current_adr->get_socket();
151
152         // Make sure that socket has been opened.
153         if(! tx_socket)
154                 tx_socket.open(
155                         dm.get_can_bus());
156
157         struct utils::simple_bcm_msg bcm_msg;
158         struct can_frame cfd;
159
160         memset(&cfd, 0, sizeof(cfd));
161         memset(&bcm_msg.msg_head, 0, sizeof(bcm_msg.msg_head));
162
163         struct timeval freq = current_adr->get_frequency_clock().get_timeval_from_period();
164
165         bcm_msg.msg_head.opcode  = TX_SETUP;
166         bcm_msg.msg_head.can_id  = arbitration_id;
167         bcm_msg.msg_head.flags = SETTIMER|STARTTIMER|TX_CP_CAN_ID;
168         bcm_msg.msg_head.ival2.tv_sec = freq.tv_sec;
169         bcm_msg.msg_head.ival2.tv_usec = freq.tv_usec;
170         bcm_msg.msg_head.nframes = 1;
171         cfd.can_dlc = size;
172         ::memcpy(cfd.data, data, size);
173
174         bcm_msg.frames = cfd;
175
176         tx_socket << bcm_msg;
177         if(tx_socket)
178                 return true;
179         return false;
180 }
181
182 /// @brief The type signature for an optional logging function, if the user
183 /// wishes to provide one. It should print, store or otherwise display the
184 /// message.
185 ///
186 /// message - A format string to log using the given parameters.
187 /// ... (vargs) - the parameters for the format string.
188 ///
189 void diagnostic_manager_t::shims_logger(const char* format, ...)
190 {
191         va_list args;
192         va_start(args, format);
193
194         char buffer[256];
195         vsnprintf(buffer, 256, format, args);
196
197         DEBUG(binder_interface, "%s: %s", __FUNCTION__, buffer);
198 }
199
200 /// @brief The type signature for a... OpenXC TODO: not used yet.
201 void diagnostic_manager_t::shims_timer()
202 {}
203
204 std::string diagnostic_manager_t::get_can_bus()
205 {
206         return bus_;
207 }
208
209 active_diagnostic_request_t* diagnostic_manager_t::get_last_recurring_requests() const
210 {
211         return recurring_requests_.back();
212 }
213
214 /// @brief Return diagnostic manager shims member.
215 DiagnosticShims& diagnostic_manager_t::get_shims()
216 {
217         return shims_;
218 }
219
220 /// @brief Search for a specific active diagnostic request in the provided requests list
221 /// and erase it from the vector. This is useful at unsubscription to clean up the list otherwize
222 /// all received CAN messages will be passed to DiagnosticRequestHandle of all active diagnostic request
223 /// contained in the vector but no event if connected to, so we will decode uneeded request.
224 ///
225 /// @param[in] entry - a pointer of an active_diagnostic_request instance to clean up
226 /// @param[in] requests_list - a vector where to make the search and cleaning.
227 void diagnostic_manager_t::find_and_erase(active_diagnostic_request_t* entry, std::vector<active_diagnostic_request_t*>& requests_list)
228 {
229         auto i = std::find(requests_list.begin(), requests_list.end(), entry);
230         if ( i != requests_list.end())
231                 requests_list.erase(i);
232 }
233
234 // @brief TODO: implement cancel_request if needed... Don't know.
235 void diagnostic_manager_t::cancel_request(active_diagnostic_request_t* entry)
236 {
237         entry->get_socket().close();
238 }
239
240 /// @brief Cleanup a specific request if it isn't running and get complete. As it is almost
241 /// impossible to get that state for a recurring request without waiting for that, you can 
242 /// force the cleaning operation.
243 ///
244 /// @param[in] entry - the request to clean
245 /// @param[in] force - Force the cleaning or not ?
246 void diagnostic_manager_t::cleanup_request(active_diagnostic_request_t* entry, bool force)
247 {
248         if((force || (entry != nullptr && entry->response_received())))
249         {
250                 char request_string[128] = {0};
251                 diagnostic_request_to_string(&entry->get_handle()->request,
252                         request_string, sizeof(request_string));
253                 if(force && entry->get_recurring())
254                 {
255                         find_and_erase(entry, recurring_requests_);
256                         cancel_request(entry);
257                         DEBUG(binder_interface, "%s: Cancelling completed, recurring request: %s", __FUNCTION__, request_string);
258                 }
259                 else
260                 {
261                         DEBUG(binder_interface, "%s: Cancelling completed, non-recurring request: %s", __FUNCTION__, request_string);
262                         find_and_erase(entry, non_recurring_requests_);
263                         cancel_request(entry);
264                 }
265         }
266 }
267
268 /// @brief Clean up all requests lists, recurring and not recurring.
269 ///
270 /// @param[in] force - Force the cleaning or not ? If true, that will do
271 /// the same effect as a call to reset().
272 void diagnostic_manager_t::cleanup_active_requests(bool force)
273 {
274         for(auto& entry : non_recurring_requests_)
275                 if (entry != nullptr)
276                         cleanup_request(entry, force);
277
278         for(auto& entry : recurring_requests_)
279                 if (entry != nullptr)
280                         cleanup_request(entry, force);
281 }
282
283 /// @brief Will return the active_diagnostic_request_t pointer for theDiagnosticRequest or nullptr if
284 /// not found.
285 ///
286 /// @param[in] request - Search key, method will go through recurring list to see if it find that request
287 ///  holded by the DiagnosticHandle member.
288 active_diagnostic_request_t* diagnostic_manager_t::find_recurring_request(const DiagnosticRequest* request)
289 {
290         for (auto& entry : recurring_requests_)
291         {
292                 if(entry != nullptr)
293                 {
294                         if(diagnostic_request_equals(&entry->get_handle()->request, request))
295                         {
296                                 return entry;
297                                 break;
298                         }
299                 }
300         }
301         return nullptr;
302 }
303
304 /// @brief Add and send a new one-time diagnostic request.
305 ///
306 /// A one-time (aka non-recurring) request can existing in parallel with a
307 /// recurring request for the same PID or mode, that's not a problem.
308 ///
309 /// For an example, see the docs for addRecurringRequest. This function is very
310 /// similar but leaves out the frequencyHz parameter.
311 ///
312 /// @param[in] request - The parameters for the request.
313 /// @param[in] name - Human readable name this response, to be used when
314 ///      publishing received responses. TODO: If the name is NULL, the published output
315 ///      will use the raw OBD-II response format.
316 /// @param[in] wait_for_multiple_responses - If false, When any response is received
317 ///      for this request it will be removed from the active list. If true, the
318 ///      request will remain active until the timeout clock expires, to allow it
319 ///      to receive multiple response. Functional broadcast requests will always
320 ///      waint for the timeout, regardless of this parameter.
321 /// @param[in] decoder - An optional DiagnosticResponseDecoder to parse the payload of
322 ///      responses to this request. If the decoder is NULL, the output will
323 ///      include the raw payload instead of a parsed value.
324 /// @param[in] callback - An optional DiagnosticResponseCallback to be notified whenever a
325 ///      response is received for this request.
326 ///
327 /// @return true if the request was added successfully. Returns false if there
328 /// wasn't a free active request entry, if the frequency was too high or if the
329 /// CAN acceptance filters could not be configured,
330 active_diagnostic_request_t* diagnostic_manager_t::add_request(DiagnosticRequest* request, const std::string name,
331         bool wait_for_multiple_responses, const DiagnosticResponseDecoder decoder,
332         const DiagnosticResponseCallback callback)
333 {
334         cleanup_active_requests(false);
335
336         active_diagnostic_request_t* entry = nullptr;
337
338         if (non_recurring_requests_.size() <= MAX_SIMULTANEOUS_DIAG_REQUESTS)
339         {
340                 // TODO: implement Acceptance Filter
341                 //      if(updateRequiredAcceptanceFilters(bus, request)) {
342                         active_diagnostic_request_t* entry = new active_diagnostic_request_t(bus_, request, name,
343                                         wait_for_multiple_responses, decoder, callback, 0);
344                         entry->set_handle(shims_, request);
345
346                         char request_string[128] = {0};
347                         diagnostic_request_to_string(&entry->get_handle()->request, request_string,
348                                         sizeof(request_string));
349
350                         find_and_erase(entry, non_recurring_requests_);
351                         DEBUG(binder_interface, "%s: Added one-time diagnostic request on bus %s: %s", __FUNCTION__,
352                                         bus_.c_str(), request_string);
353
354                         non_recurring_requests_.push_back(entry);
355         }
356         else
357         {
358                 WARNING(binder_interface, "%s: There isn't enough request entry. Vector exhausted %d/%d", __FUNCTION__, (int)non_recurring_requests_.size(), MAX_SIMULTANEOUS_DIAG_REQUESTS);
359                 non_recurring_requests_.resize(MAX_SIMULTANEOUS_DIAG_REQUESTS);
360         }
361         return entry;
362 }
363
364 bool diagnostic_manager_t::validate_optional_request_attributes(float frequencyHz)
365 {
366         if(frequencyHz > MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ) {
367                 DEBUG(binder_interface, "%s: Requested recurring diagnostic frequency %lf is higher than maximum of %d", __FUNCTION__,
368                         frequencyHz, MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ);
369                 return false;
370         }
371         return true;
372 }
373
374 /// @brief Add and send a new recurring diagnostic request.
375 ///
376 /// At most one recurring request can be active for the same arbitration ID, mode
377 /// and (if set) PID on the same bus at one time. If you try and call
378 /// addRecurringRequest with the same key, it will return an error.
379 ///
380 /// TODO: This also adds any neccessary CAN acceptance filters so we can receive the
381 /// response. If the request is to the functional broadcast ID (0x7df) filters
382 /// are added for all functional addresses (0x7e8 to 0x7f0).
383 ///
384 /// Example:
385 ///
386 ///     // Creating a functional broadcast, mode 1 request for PID 2.
387 ///     DiagnosticRequest request = {
388 ///         arbitration_id: 0x7df,
389 ///         mode: 1,
390 ///         has_pid: true,
391 ///         pid: 2
392 ///     };
393 ///
394 ///     // Add a recurring request, to be sent at 1Hz, and published with the
395 ///     // name "my_pid_request"
396 ///     addRecurringRequest(&getConfiguration()->diagnosticsManager,
397 ///          canBus,
398 ///          &request,
399 ///          "my_pid_request",
400 ///          false,
401 ///          NULL,
402 ///          NULL,
403 ///          1);
404 ///
405 /// @param[in] request - The parameters for the request.
406 /// @param[in] name - An optional human readable name this response, to be used when
407 ///      publishing received responses. If the name is NULL, the published output
408 ///      will use the raw OBD-II response format.
409 /// @param[in] wait_for_multiple_responses - If false, When any response is received
410 ///      for this request it will be removed from the active list. If true, the
411 ///      request will remain active until the timeout clock expires, to allow it
412 ///      to receive multiple response. Functional broadcast requests will always
413 ///      waint for the timeout, regardless of this parameter.
414 /// @param[in] decoder - An optional DiagnosticResponseDecoder to parse the payload of
415 ///      responses to this request. If the decoder is NULL, the output will
416 ///      include the raw payload instead of a parsed value.
417 /// @param[in] callback - An optional DiagnosticResponseCallback to be notified whenever a
418 ///      response is received for this request.
419 /// @param[in] frequencyHz - The frequency (in Hz) to send the request. A frequency above
420 ///      MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ is not allowed, and will make this
421 ///      function return false.
422 ///
423 /// @return true if the request was added successfully. Returns false if there
424 /// was too much already running requests, if the frequency was too high TODO:or if the
425 /// CAN acceptance filters could not be configured,
426 active_diagnostic_request_t* diagnostic_manager_t::add_recurring_request(DiagnosticRequest* request, const char* name,
427                 bool wait_for_multiple_responses, const DiagnosticResponseDecoder decoder,
428                 const DiagnosticResponseCallback callback, float frequencyHz)
429 {
430         active_diagnostic_request_t* entry = nullptr;
431
432         if(!validate_optional_request_attributes(frequencyHz))
433                 return entry;
434
435         cleanup_active_requests(false);
436
437         if(find_recurring_request(request) == nullptr)
438         {
439                 if(recurring_requests_.size() <= MAX_SIMULTANEOUS_DIAG_REQUESTS)
440                 {
441                         // TODO: implement Acceptance Filter
442                         //if(updateRequiredAcceptanceFilters(bus, request)) {
443                         entry = new active_diagnostic_request_t(bus_, request, name,
444                                         wait_for_multiple_responses, decoder, callback, frequencyHz);
445                         recurring_requests_.push_back(entry);
446
447                         entry->set_handle(shims_, request);
448                         if(add_rx_filter(OBD2_FUNCTIONAL_BROADCAST_ID) < 0)
449                                 { recurring_requests_.pop_back(); }
450                         else
451                                 {
452                                         start_diagnostic_request(&shims_, entry->get_handle()); 
453                                         if(event_source_ == nullptr && sd_event_add_io(afb_daemon_get_event_loop(binder_interface->daemon), 
454                                                 &event_source_,
455                                                 socket_.socket(),
456                                                 EPOLLIN,
457                                                 read_diagnostic_message,
458                                                 nullptr) < 0)
459                                         {
460                                                 cleanup_request(entry, true);
461                                                 WARNING(binder_interface, "%s: signal: %s isn't supported. Canceling operation.", __FUNCTION__, entry->get_name().c_str());
462                                                 return entry;
463                                         }
464                                 }
465                 }
466                 else
467                 {
468                         WARNING(binder_interface, "%s: There isn't enough request entry. Vector exhausted %d/%d", __FUNCTION__, (int)recurring_requests_.size(), MAX_SIMULTANEOUS_DIAG_REQUESTS);
469                         recurring_requests_.resize(MAX_SIMULTANEOUS_DIAG_REQUESTS);
470                 }
471         }
472         else
473                 { DEBUG(binder_interface, "%s: Can't add request, one already exists with same key", __FUNCTION__);}
474         return entry;
475 }
476
477 /// @brief Will decode the diagnostic response and build the final openxc_VehicleMessage to return.
478 ///
479 /// @param[in] adr - A pointer to an active diagnostic request holding a valid diagnostic handle
480 /// @param[in] response - The response to decode from which the Vehicle message will be built and returned
481 ///
482 /// @return A filled openxc_VehicleMessage or a zeroed struct if there is an error.
483 openxc_VehicleMessage diagnostic_manager_t::relay_diagnostic_response(active_diagnostic_request_t* adr, const DiagnosticResponse& response)
484 {
485         openxc_VehicleMessage message = build_VehicleMessage();
486         float value = (float)diagnostic_payload_to_integer(&response);
487         if(adr->get_decoder() != nullptr)
488         {
489                 value = adr->get_decoder()(&response, value);
490         }
491
492         if((response.success && adr->get_name().size()) > 0)
493         {
494                 // If name, include 'value' instead of payload, and leave of response
495                 // details.
496                 message = build_VehicleMessage(build_SimpleMessage(adr->get_name(), build_DynamicField(value)));
497         }
498         else
499         {
500                 // If no name, send full details of response but still include 'value'
501                 // instead of 'payload' if they provided a decoder. The one case you
502                 // can't get is the full detailed response with 'value'. We could add
503                 // another parameter for that but it's onerous to carry that around.
504                 message = build_VehicleMessage(adr, response, value);
505         }
506
507         // If not success but completed then the pid isn't supported
508         if(!response.success)
509         {
510                 struct utils::signals_found found_signals;
511                 found_signals = utils::signals_manager_t::instance().find_signals(build_DynamicField(adr->get_name()));
512                 found_signals.diagnostic_messages.front()->set_supported(false);
513                 cleanup_request(adr, true);
514                 NOTICE(binder_interface, "%s: PID not supported or ill formed. Please unsubscribe from it. Error code : %d", __FUNCTION__, response.negative_response_code);
515                 message = build_VehicleMessage(build_SimpleMessage(adr->get_name(), build_DynamicField("This PID isn't supported by your vehicle.")));
516         }
517
518         if(adr->get_callback() != nullptr)
519         {
520                 adr->get_callback()(adr, &response, value);
521         }
522
523         // Reset the completed flag handle to make sure that it will be reprocessed the next time.
524         adr->get_handle()->success = false;
525         return message;
526 }
527
528 /// @brief Will take the CAN message and pass it to the receive functions that will process
529 /// diagnostic handle for each active diagnostic request then depending on the result we will 
530 /// return pass the diagnostic response to decode it.
531 ///
532 /// @param[in] entry - A pointer to an active diagnostic request holding a valid diagnostic handle
533 /// @param[in] cm - A raw CAN message.
534 ///
535 /// @return A pointer to a filled openxc_VehicleMessage or a nullptr if nothing has been found.
536 openxc_VehicleMessage diagnostic_manager_t::relay_diagnostic_handle(active_diagnostic_request_t* entry, const can_message_t& cm)
537 {
538         DiagnosticResponse response = diagnostic_receive_can_frame(&shims_, entry->get_handle(), cm.get_id(), cm.get_data(), cm.get_length());
539         if(response.completed && entry->get_handle()->completed)
540         {
541                 if(entry->get_handle()->success)
542                         return relay_diagnostic_response(entry, response);
543         }
544         else if(!response.completed && response.multi_frame)
545         {
546                 // Reset the timeout clock while completing the multi-frame receive
547                 entry->get_timeout_clock().tick();
548         }
549
550         return build_VehicleMessage();
551 }
552
553 /// @brief Find the active diagnostic request with the correct DiagnosticRequestHandle
554 /// member that will understand the CAN message using diagnostic_receive_can_frame function
555 /// from UDS-C library. Then decode it with an ad-hoc method.
556 ///
557 /// @param[in] cm - Raw CAN message received
558 ///
559 /// @return VehicleMessage with decoded value.
560 openxc_VehicleMessage diagnostic_manager_t::find_and_decode_adr(const can_message_t& cm)
561 {
562         openxc_VehicleMessage vehicle_message = build_VehicleMessage();
563
564         for ( auto entry : non_recurring_requests_)
565         {
566                 vehicle_message = relay_diagnostic_handle(entry, cm);
567                 if (is_valid(vehicle_message))
568                         return vehicle_message;
569         }
570
571         for ( auto entry : recurring_requests_)
572         {
573                 vehicle_message = relay_diagnostic_handle(entry, cm);
574                 if (is_valid(vehicle_message))
575                         return vehicle_message;
576         }
577
578         return vehicle_message;
579 }
580
581 /// @brief Tell if the CAN message received is a diagnostic response.
582 /// Request broadcast ID use 0x7DF and assigned ID goes from 0x7E0 to Ox7E7. That allows up to 8 ECU to respond 
583 /// at the same time. The response is the assigned ID + 0x8, so response ID can goes from 0x7E8 to 0x7EF.
584 ///
585 /// @param[in] cm - CAN message received from the socket.
586 ///
587 /// @return True if the active diagnostic request match the response.
588 bool diagnostic_manager_t::is_diagnostic_response(const can_message_t& cm)
589 {
590         if (cm.get_id() >= 0x7e8 && cm.get_id() <= 0x7ef)
591                         return true;
592         return false;
593 }