Delete pointer and content, possible memory leak
[apps/agl-service-can-low-level.git] / CAN-binder / low-can-binding / diagnostic / diagnostic-manager.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <systemd/sd-event.h>
19 #include <algorithm>
20 #include <string.h>
21
22 #include "diagnostic-manager.hpp"
23
24 #include "../utils/openxc-utils.hpp"
25 #include "../utils/signals.hpp"
26 #include "../binding/application.hpp"
27
28 #define MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ 10
29 #define MAX_SIMULTANEOUS_DIAG_REQUESTS 50
30 // There are only 8 slots of in flight diagnostic requests
31 #define MAX_SIMULTANEOUS_IN_FLIGHT_REQUESTS 8
32 #define TIMERFD_ACCURACY 0
33 #define MICRO 1000000
34
35 diagnostic_manager_t::diagnostic_manager_t()
36         : initialized_{false}, event_source_{nullptr}
37 {}
38
39 /// @brief Diagnostic manager isn't initialized at launch but after
40 ///  CAN bus devices initialization. For the moment, it is only possible
41 ///  to have 1 diagnostic bus which are the first bus declared in the JSON
42 ///  description file. Configuration instance will return it.
43 ///
44 /// this will initialize DiagnosticShims and cancel all active requests 
45 ///  if there are any.
46 bool diagnostic_manager_t::initialize()
47 {
48         // Mandatory to set the bus before intialize shims.
49         bus_ = application_t::instance().get_diagnostic_bus();
50
51         init_diagnostic_shims();
52         event_source_ = nullptr;
53         reset();
54
55         initialized_ = true;
56         DEBUG(binder_interface, "%s: Diagnostic Manager initialized", __FUNCTION__);
57         return initialized_;
58 }
59
60 utils::socketcan_bcm_t& diagnostic_manager_t::get_socket()
61 {
62         return socket_;
63 }
64
65 /// @brief initialize shims used by UDS lib and set initialized_ to true.
66 ///  It is needed before used the diagnostic manager fully because shims are
67 ///  required by most member functions.
68 void diagnostic_manager_t::init_diagnostic_shims()
69 {
70         shims_ = diagnostic_init_shims(shims_logger, shims_send, NULL);
71         DEBUG(binder_interface, "%s: Shims initialized", __FUNCTION__);
72 }
73
74 /// @brief Force cleanup all active requests.
75 void diagnostic_manager_t::reset()
76 {
77         DEBUG(binder_interface, "%s: Clearing existing diagnostic requests", __FUNCTION__);
78         cleanup_active_requests(true);
79 }
80
81 /// @brief Adds 8 RX_SETUP jobs to the BCM rx_socket_ then diagnotic manager
82 ///  listens on CAN ID range 7E8 - 7EF affected to the OBD2 communications.
83 ///
84 /// @return -1 or negative value on error, 0 if ok.
85 int diagnostic_manager_t::create_rx_filter(uint32_t can_id, float frequency)
86 {
87         // Make sure that socket has been opened.
88         if(! socket_)
89                 socket_.open(get_bus_device_name());
90
91         struct utils::simple_bcm_msg bcm_msg;
92         memset(&bcm_msg, 0, sizeof(bcm_msg));
93
94         const struct timeval freq =  (frequency == recurring_requests_.back()->get_frequency_clock().get_frequency() ) ?
95                 recurring_requests_.back()->get_frequency_clock().get_timeval_from_period() : frequency_clock_t(frequency).get_timeval_from_period();
96
97         bcm_msg.msg_head.opcode  = RX_SETUP;
98         bcm_msg.msg_head.flags = SETTIMER|RX_FILTER_ID;
99         bcm_msg.msg_head.ival2.tv_sec = freq.tv_sec;
100         bcm_msg.msg_head.ival2.tv_usec = freq.tv_usec;
101
102         // If it isn't an OBD2 CAN ID then just add a simple RX_SETUP job
103         if(can_id != OBD2_FUNCTIONAL_BROADCAST_ID) 
104         {
105                 bcm_msg.msg_head.can_id  = can_id;
106
107                 socket_ << bcm_msg;
108                         if(! socket_)
109                                 return -1;
110         }
111         else
112         {
113                 for(uint8_t i = 0; i < 8; i++)
114                 {
115                         can_id  =  OBD2_FUNCTIONAL_RESPONSE_START + i;
116                         bcm_msg.msg_head.can_id  = can_id;
117
118                         socket_ << bcm_msg;
119                         if(! socket_)
120                                 return -1;
121                 }
122         }
123
124         return 0;
125 }
126
127 /// @brief send function use by diagnostic library. Only one bus used for now
128 ///  so diagnostic request is sent using the default diagnostic bus not matter of
129 ///  which is specified in the diagnostic message definition.
130 ///
131 /// @param[in] arbitration_id - CAN arbitration ID to use when send message. OBD2 broadcast ID
132 ///  is 0x7DF by example.
133 /// @param[in] data - The data payload for the message. NULL is valid if size is also 0.
134 /// @param[in] size - The size of the data payload, in bytes.
135 ///
136 /// @return true if the CAN message was sent successfully. 
137 bool diagnostic_manager_t::shims_send(const uint32_t arbitration_id, const uint8_t* data, const uint8_t size)
138 {
139         diagnostic_manager_t& dm = application_t::instance().get_diagnostic_manager();
140         active_diagnostic_request_t* current_adr = dm.get_last_recurring_requests();
141         utils::socketcan_bcm_t& tx_socket = current_adr->get_socket();
142
143         // Make sure that socket has been opened.
144         if(! tx_socket)
145                 tx_socket.open(
146                         dm.get_bus_device_name());
147
148         struct utils::simple_bcm_msg bcm_msg;
149         struct can_frame cfd;
150
151         memset(&cfd, 0, sizeof(cfd));
152         memset(&bcm_msg.msg_head, 0, sizeof(bcm_msg.msg_head));
153
154         struct timeval freq = current_adr->get_frequency_clock().get_timeval_from_period();
155
156         bcm_msg.msg_head.opcode  = TX_SETUP;
157         bcm_msg.msg_head.can_id  = arbitration_id;
158         bcm_msg.msg_head.flags = SETTIMER|STARTTIMER|TX_CP_CAN_ID;
159         bcm_msg.msg_head.ival2.tv_sec = freq.tv_sec;
160         bcm_msg.msg_head.ival2.tv_usec = freq.tv_usec;
161         bcm_msg.msg_head.nframes = 1;
162         cfd.can_dlc = size;
163         ::memcpy(cfd.data, data, size);
164
165         bcm_msg.frames = cfd;
166
167         tx_socket << bcm_msg;
168         if(tx_socket)
169                 return true;
170         return false;
171 }
172
173 /// @brief The type signature for an optional logging function, if the user
174 /// wishes to provide one. It should print, store or otherwise display the
175 /// message.
176 ///
177 /// message - A format string to log using the given parameters.
178 /// ... (vargs) - the parameters for the format string.
179 ///
180 void diagnostic_manager_t::shims_logger(const char* format, ...)
181 {
182         va_list args;
183         va_start(args, format);
184
185         char buffer[256];
186         vsnprintf(buffer, 256, format, args);
187
188         DEBUG(binder_interface, "%s: %s", __FUNCTION__, buffer);
189         va_end(args);
190 }
191
192 /// @brief The type signature for a... OpenXC TODO: not used yet.
193 void diagnostic_manager_t::shims_timer()
194 {}
195
196 const std::string diagnostic_manager_t::get_bus_name() const
197 {
198         return bus_;
199 }
200
201 const std::string diagnostic_manager_t::get_bus_device_name() const
202 {
203         return application_t::instance().get_can_bus_manager()
204                 .get_can_device_name(bus_);
205 }
206
207 active_diagnostic_request_t* diagnostic_manager_t::get_last_recurring_requests() const
208 {
209         return recurring_requests_.back();
210 }
211
212 /// @brief Return diagnostic manager shims member.
213 DiagnosticShims& diagnostic_manager_t::get_shims()
214 {
215         return shims_;
216 }
217
218 bool diagnostic_manager_t::socket_close()
219 {
220         if(non_recurring_requests_.empty() && recurring_requests_.empty())
221         {
222                 socket_.close();
223                 return true;
224         }
225         return false;
226 }
227
228 /// @brief Search for a specific active diagnostic request in the provided requests list
229 /// and erase it from the vector. This is useful at unsubscription to clean up the list otherwize
230 /// all received CAN messages will be passed to DiagnosticRequestHandle of all active diagnostic request
231 /// contained in the vector but no event if connected to, so we will decode uneeded request.
232 ///
233 /// @param[in] entry - a pointer of an active_diagnostic_request instance to clean up
234 /// @param[in] requests_list - a vector where to make the search and cleaning.
235 void diagnostic_manager_t::find_and_erase(active_diagnostic_request_t* entry, std::vector<active_diagnostic_request_t*>& requests_list)
236 {
237         auto i = std::find(requests_list.begin(), requests_list.end(), entry);
238         if ( i != requests_list.end())
239                 requests_list.erase(i);
240 }
241
242 // @brief TODO: implement cancel_request if needed... Don't know.
243 void diagnostic_manager_t::cancel_request(active_diagnostic_request_t* entry)
244 {
245         entry->get_socket().close();
246         delete entry;
247         entry = nullptr;
248 }
249
250 /// @brief Cleanup a specific request if it isn't running and get complete. As it is almost
251 /// impossible to get that state for a recurring request without waiting for that, you can 
252 /// force the cleaning operation.
253 ///
254 /// @param[in] entry - the request to clean
255 /// @param[in] force - Force the cleaning or not ?
256 void diagnostic_manager_t::cleanup_request(active_diagnostic_request_t* entry, bool force)
257 {
258         if((force || (entry != nullptr && entry->response_received())))
259         {
260                 char request_string[128] = {0};
261                 diagnostic_request_to_string(&entry->get_handle()->request,
262                         request_string, sizeof(request_string));
263                 if(force && entry->get_recurring())
264                 {
265                         cancel_request(entry);
266                         find_and_erase(entry, recurring_requests_);
267                         DEBUG(binder_interface, "%s: Cancelling completed, recurring request: %s", __FUNCTION__, request_string);
268                 }
269                 else if (!entry->get_recurring())
270                 {
271                         DEBUG(binder_interface, "%s: Cancelling completed, non-recurring request: %s", __FUNCTION__, request_string);
272                         cancel_request(entry);
273                         find_and_erase(entry, non_recurring_requests_);
274                 }
275                 socket_close();
276         }
277 }
278
279 /// @brief Clean up all requests lists, recurring and not recurring.
280 ///
281 /// @param[in] force - Force the cleaning or not ? If true, that will do
282 /// the same effect as a call to reset().
283 void diagnostic_manager_t::cleanup_active_requests(bool force)
284 {
285         for(auto& entry : non_recurring_requests_)
286         {
287                 if (entry != nullptr)
288                         cleanup_request(entry, force);
289         }
290
291         for(auto& entry : recurring_requests_)
292          {
293                 if (entry != nullptr)
294                         cleanup_request(entry, force);
295          }
296 }
297
298 /// @brief Will return the active_diagnostic_request_t pointer for theDiagnosticRequest or nullptr if
299 /// not found.
300 ///
301 /// @param[in] request - Search key, method will go through recurring list to see if it find that request
302 ///  holded by the DiagnosticHandle member.
303 active_diagnostic_request_t* diagnostic_manager_t::find_recurring_request(const DiagnosticRequest* request)
304 {
305         for (auto& entry : recurring_requests_)
306         {
307                 if(entry != nullptr)
308                 {
309                         if(diagnostic_request_equals(&entry->get_handle()->request, request))
310                                 {return entry;}
311                 }
312         }
313         return nullptr;
314 }
315
316 /// @brief Add and send a new one-time diagnostic request.
317 ///
318 /// A one-time (aka non-recurring) request can existing in parallel with a
319 /// recurring request for the same PID or mode, that's not a problem.
320 ///
321 /// For an example, see the docs for addRecurringRequest. This function is very
322 /// similar but leaves out the frequencyHz parameter.
323 ///
324 /// @param[in] request - The parameters for the request.
325 /// @param[in] name - Human readable name this response, to be used when
326 ///      publishing received responses. TODO: If the name is NULL, the published output
327 ///      will use the raw OBD-II response format.
328 /// @param[in] wait_for_multiple_responses - If false, When any response is received
329 ///      for this request it will be removed from the active list. If true, the
330 ///      request will remain active until the timeout clock expires, to allow it
331 ///      to receive multiple response. Functional broadcast requests will always
332 ///      waint for the timeout, regardless of this parameter.
333 /// @param[in] decoder - An optional DiagnosticResponseDecoder to parse the payload of
334 ///      responses to this request. If the decoder is NULL, the output will
335 ///      include the raw payload instead of a parsed value.
336 /// @param[in] callback - An optional DiagnosticResponseCallback to be notified whenever a
337 ///      response is received for this request.
338 ///
339 /// @return true if the request was added successfully. Returns false if there
340 /// wasn't a free active request entry, if the frequency was too high or if the
341 /// CAN acceptance filters could not be configured,
342 active_diagnostic_request_t* diagnostic_manager_t::add_request(DiagnosticRequest* request, const std::string& name,
343         bool wait_for_multiple_responses, const DiagnosticResponseDecoder decoder,
344         const DiagnosticResponseCallback callback)
345 {
346         cleanup_active_requests(false);
347
348         active_diagnostic_request_t* entry = nullptr;
349
350         if (non_recurring_requests_.size() <= MAX_SIMULTANEOUS_DIAG_REQUESTS)
351         {
352                 // TODO: implement Acceptance Filter
353                 //      if(updateRequiredAcceptanceFilters(bus, request)) {
354                         active_diagnostic_request_t* entry = new active_diagnostic_request_t(bus_, request, name,
355                                         wait_for_multiple_responses, decoder, callback, 0);
356                         entry->set_handle(shims_, request);
357
358                         char request_string[128] = {0};
359                         diagnostic_request_to_string(&entry->get_handle()->request, request_string,
360                                         sizeof(request_string));
361
362                         find_and_erase(entry, non_recurring_requests_);
363                         DEBUG(binder_interface, "%s: Added one-time diagnostic request on bus %s: %s", __FUNCTION__,
364                                         bus_.c_str(), request_string);
365
366                         non_recurring_requests_.push_back(entry);
367         }
368         else
369         {
370                 WARNING(binder_interface, "%s: There isn't enough request entry. Vector exhausted %d/%d", __FUNCTION__, (int)non_recurring_requests_.size(), MAX_SIMULTANEOUS_DIAG_REQUESTS);
371                 non_recurring_requests_.resize(MAX_SIMULTANEOUS_DIAG_REQUESTS);
372         }
373         return entry;
374 }
375
376 bool diagnostic_manager_t::validate_optional_request_attributes(float frequencyHz)
377 {
378         if(frequencyHz > MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ) {
379                 DEBUG(binder_interface, "%s: Requested recurring diagnostic frequency %lf is higher than maximum of %d", __FUNCTION__,
380                         frequencyHz, MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ);
381                 return false;
382         }
383         return true;
384 }
385
386 /// @brief Add and send a new recurring diagnostic request.
387 ///
388 /// At most one recurring request can be active for the same arbitration ID, mode
389 /// and (if set) PID on the same bus at one time. If you try and call
390 /// addRecurringRequest with the same key, it will return an error.
391 ///
392 /// TODO: This also adds any neccessary CAN acceptance filters so we can receive the
393 /// response. If the request is to the functional broadcast ID (0x7df) filters
394 /// are added for all functional addresses (0x7e8 to 0x7f0).
395 ///
396 /// Example:
397 ///
398 ///     // Creating a functional broadcast, mode 1 request for PID 2.
399 ///     DiagnosticRequest request = {
400 ///         arbitration_id: 0x7df,
401 ///         mode: 1,
402 ///         has_pid: true,
403 ///         pid: 2
404 ///     };
405 ///
406 ///     // Add a recurring request, to be sent at 1Hz, and published with the
407 ///     // name "my_pid_request"
408 ///     addRecurringRequest(&getConfiguration()->diagnosticsManager,
409 ///          canBus,
410 ///          &request,
411 ///          "my_pid_request",
412 ///          false,
413 ///          NULL,
414 ///          NULL,
415 ///          1);
416 ///
417 /// @param[in] request - The parameters for the request.
418 /// @param[in] name - An optional human readable name this response, to be used when
419 ///      publishing received responses. If the name is NULL, the published output
420 ///      will use the raw OBD-II response format.
421 /// @param[in] wait_for_multiple_responses - If false, When any response is received
422 ///      for this request it will be removed from the active list. If true, the
423 ///      request will remain active until the timeout clock expires, to allow it
424 ///      to receive multiple response. Functional broadcast requests will always
425 ///      waint for the timeout, regardless of this parameter.
426 /// @param[in] decoder - An optional DiagnosticResponseDecoder to parse the payload of
427 ///      responses to this request. If the decoder is NULL, the output will
428 ///      include the raw payload instead of a parsed value.
429 /// @param[in] callback - An optional DiagnosticResponseCallback to be notified whenever a
430 ///      response is received for this request.
431 /// @param[in] frequencyHz - The frequency (in Hz) to send the request. A frequency above
432 ///      MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ is not allowed, and will make this
433 ///      function return false.
434 ///
435 /// @return true if the request was added successfully. Returns false if there
436 /// was too much already running requests, if the frequency was too high TODO:or if the
437 /// CAN acceptance filters could not be configured,
438 active_diagnostic_request_t* diagnostic_manager_t::add_recurring_request(DiagnosticRequest* request, const char* name,
439                 bool wait_for_multiple_responses, const DiagnosticResponseDecoder decoder,
440                 const DiagnosticResponseCallback callback, float frequencyHz)
441 {
442         active_diagnostic_request_t* entry = nullptr;
443
444         if(!validate_optional_request_attributes(frequencyHz))
445                 return entry;
446
447         cleanup_active_requests(false);
448
449         if(find_recurring_request(request) == nullptr)
450         {
451                 if(recurring_requests_.size() <= MAX_SIMULTANEOUS_DIAG_REQUESTS)
452                 {
453                         // TODO: implement Acceptance Filter
454                         //if(updateRequiredAcceptanceFilters(bus, request)) {
455                         entry = new active_diagnostic_request_t(bus_, request, name,
456                                         wait_for_multiple_responses, decoder, callback, frequencyHz);
457                         recurring_requests_.push_back(entry);
458
459                         entry->set_handle(shims_, request);
460                         if(create_rx_filter(OBD2_FUNCTIONAL_BROADCAST_ID, frequencyHz) < 0)
461                         {
462                                 recurring_requests_.pop_back();
463                                 delete entry;
464                                 entry = nullptr;
465                         }
466                         else
467                                 {
468                                         start_diagnostic_request(&shims_, entry->get_handle()); 
469                                         if(event_source_ == nullptr && sd_event_add_io(afb_daemon_get_event_loop(binder_interface->daemon), 
470                                                 &event_source_,
471                                                 socket_.socket(),
472                                                 EPOLLIN,
473                                                 read_message,
474                                                 nullptr) < 0)
475                                         {
476                                                 cleanup_request(entry, true);
477                                                 WARNING(binder_interface, "%s: signal: %s isn't supported. Canceling operation.", __FUNCTION__, entry->get_name().c_str());
478                                                 return entry;
479                                         }
480                                 }
481                 }
482                 else
483                 {
484                         WARNING(binder_interface, "%s: There isn't enough request entry. Vector exhausted %d/%d", __FUNCTION__, (int)recurring_requests_.size(), MAX_SIMULTANEOUS_DIAG_REQUESTS);
485                         recurring_requests_.resize(MAX_SIMULTANEOUS_DIAG_REQUESTS);
486                 }
487         }
488         else
489                 { DEBUG(binder_interface, "%s: Can't add request, one already exists with same key", __FUNCTION__);}
490         return entry;
491 }
492
493 /// @brief Will decode the diagnostic response and build the final openxc_VehicleMessage to return.
494 ///
495 /// @param[in] adr - A pointer to an active diagnostic request holding a valid diagnostic handle
496 /// @param[in] response - The response to decode from which the Vehicle message will be built and returned
497 ///
498 /// @return A filled openxc_VehicleMessage or a zeroed struct if there is an error.
499 openxc_VehicleMessage diagnostic_manager_t::relay_diagnostic_response(active_diagnostic_request_t* adr, const DiagnosticResponse& response)
500 {
501         openxc_VehicleMessage message = build_VehicleMessage();
502         float value = (float)diagnostic_payload_to_integer(&response);
503         if(adr->get_decoder() != nullptr)
504         {
505                 value = adr->get_decoder()(&response, value);
506         }
507
508         if((response.success && adr->get_name().size()) > 0)
509         {
510                 // If name, include 'value' instead of payload, and leave of response
511                 // details.
512                 message = build_VehicleMessage(build_SimpleMessage(adr->get_name(), build_DynamicField(value)));
513         }
514         else
515         {
516                 // If no name, send full details of response but still include 'value'
517                 // instead of 'payload' if they provided a decoder. The one case you
518                 // can't get is the full detailed response with 'value'. We could add
519                 // another parameter for that but it's onerous to carry that around.
520                 message = build_VehicleMessage(adr, response, value);
521         }
522
523         // If not success but completed then the pid isn't supported
524         if(!response.success)
525         {
526                 struct utils::signals_found found_signals;
527                 found_signals = utils::signals_manager_t::instance().find_signals(build_DynamicField(adr->get_name()));
528                 found_signals.diagnostic_messages.front()->set_supported(false);
529                 cleanup_request(adr, true);
530                 NOTICE(binder_interface, "%s: PID not supported or ill formed. Please unsubscribe from it. Error code : %d", __FUNCTION__, response.negative_response_code);
531                 message = build_VehicleMessage(build_SimpleMessage(adr->get_name(), build_DynamicField("This PID isn't supported by your vehicle.")));
532         }
533
534         if(adr->get_callback() != nullptr)
535         {
536                 adr->get_callback()(adr, &response, value);
537         }
538
539         // Reset the completed flag handle to make sure that it will be reprocessed the next time.
540         adr->get_handle()->success = false;
541         return message;
542 }
543
544 /// @brief Will take the CAN message and pass it to the receive functions that will process
545 /// diagnostic handle for each active diagnostic request then depending on the result we will 
546 /// return pass the diagnostic response to decode it.
547 ///
548 /// @param[in] entry - A pointer to an active diagnostic request holding a valid diagnostic handle
549 /// @param[in] cm - A raw CAN message.
550 ///
551 /// @return A pointer to a filled openxc_VehicleMessage or a nullptr if nothing has been found.
552 openxc_VehicleMessage diagnostic_manager_t::relay_diagnostic_handle(active_diagnostic_request_t* entry, const can_message_t& cm)
553 {
554         DiagnosticResponse response = diagnostic_receive_can_frame(&shims_, entry->get_handle(), cm.get_id(), cm.get_data(), cm.get_length());
555         if(response.completed && entry->get_handle()->completed)
556         {
557                 if(entry->get_handle()->success)
558                         return relay_diagnostic_response(entry, response);
559         }
560         else if(!response.completed && response.multi_frame)
561         {
562                 // Reset the timeout clock while completing the multi-frame receive
563                 entry->get_timeout_clock().tick(
564                         entry->get_timeout_clock().get_time_function()());
565         }
566
567         return build_VehicleMessage();
568 }
569
570 /// @brief Find the active diagnostic request with the correct DiagnosticRequestHandle
571 /// member that will understand the CAN message using diagnostic_receive_can_frame function
572 /// from UDS-C library. Then decode it with an ad-hoc method.
573 ///
574 /// @param[in] cm - Raw CAN message received
575 ///
576 /// @return VehicleMessage with decoded value.
577 openxc_VehicleMessage diagnostic_manager_t::find_and_decode_adr(const can_message_t& cm)
578 {
579         openxc_VehicleMessage vehicle_message = build_VehicleMessage();
580
581         for ( auto entry : non_recurring_requests_)
582         {
583                 vehicle_message = relay_diagnostic_handle(entry, cm);
584                 if (is_valid(vehicle_message))
585                         return vehicle_message;
586         }
587
588         for ( auto entry : recurring_requests_)
589         {
590                 vehicle_message = relay_diagnostic_handle(entry, cm);
591                 if (is_valid(vehicle_message))
592                         return vehicle_message;
593         }
594
595         return vehicle_message;
596 }
597
598 /// @brief Tell if the CAN message received is a diagnostic response.
599 /// Request broadcast ID use 0x7DF and assigned ID goes from 0x7E0 to Ox7E7. That allows up to 8 ECU to respond 
600 /// at the same time. The response is the assigned ID + 0x8, so response ID can goes from 0x7E8 to 0x7EF.
601 ///
602 /// @param[in] cm - CAN message received from the socket.
603 ///
604 /// @return True if the active diagnostic request match the response.
605 bool diagnostic_manager_t::is_diagnostic_response(const can_message_t& cm)
606 {
607         if (cm.get_id() >= 0x7e8 && cm.get_id() <= 0x7ef)
608                         return true;
609         return false;
610 }