Make and use a single function to read incoming CAN messages
[apps/low-level-can-service.git] / CAN-binder / low-can-binding / diagnostic / diagnostic-manager.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <systemd/sd-event.h>
19 #include <algorithm>
20 #include <string.h>
21
22 #include "diagnostic-manager.hpp"
23
24 #include "../utils/openxc-utils.hpp"
25 #include "../utils/signals.hpp"
26 #include "../binding/configuration.hpp"
27
28 #define MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ 10
29 #define MAX_SIMULTANEOUS_DIAG_REQUESTS 50
30 // There are only 8 slots of in flight diagnostic requests
31 #define MAX_SIMULTANEOUS_IN_FLIGHT_REQUESTS 8
32 #define TIMERFD_ACCURACY 0
33 #define MICRO 1000000
34
35 diagnostic_manager_t::diagnostic_manager_t()
36         : initialized_{false}
37 {}
38
39 /// @brief Diagnostic manager isn't initialized at launch but after
40 ///  CAN bus devices initialization. For the moment, it is only possible
41 ///  to have 1 diagnostic bus which are the first bus declared in the JSON
42 ///  description file. Configuration instance will return it.
43 ///
44 /// this will initialize DiagnosticShims and cancel all active requests 
45 ///  if there are any.
46 bool diagnostic_manager_t::initialize()
47 {
48         // Mandatory to set the bus before intialize shims.
49         bus_ = configuration_t::instance().get_diagnostic_bus();
50
51         init_diagnostic_shims();
52         event_source_ = nullptr;
53         reset();
54
55         initialized_ = true;
56         DEBUG(binder_interface, "%s: Diagnostic Manager initialized", __FUNCTION__);
57         return initialized_;
58 }
59
60 utils::socketcan_bcm_t& diagnostic_manager_t::get_socket()
61 {
62         return socket_;
63 }
64
65 /// @brief initialize shims used by UDS lib and set initialized_ to true.
66 ///  It is needed before used the diagnostic manager fully because shims are
67 ///  required by most member functions.
68 void diagnostic_manager_t::init_diagnostic_shims()
69 {
70         shims_ = diagnostic_init_shims(shims_logger, shims_send, NULL);
71         DEBUG(binder_interface, "%s: Shims initialized", __FUNCTION__);
72 }
73
74 /// @brief Force cleanup all active requests.
75 void diagnostic_manager_t::reset()
76 {
77         DEBUG(binder_interface, "%s: Clearing existing diagnostic requests", __FUNCTION__);
78         cleanup_active_requests(true);
79 }
80
81 /// @brief Adds 8 RX_SETUP jobs to the BCM rx_socket_ then diagnotic manager
82 ///  listens on CAN ID range 7E8 - 7EF affected to the OBD2 communications.
83 ///
84 /// @return -1 or negative value on error, 0 if ok.
85 int diagnostic_manager_t::add_rx_filter(uint32_t can_id)
86 {
87         // Make sure that socket has been opened.
88         if(! socket_)
89                 socket_.open(bus_);
90
91         struct utils::simple_bcm_msg bcm_msg;
92         memset(&bcm_msg.msg_head, 0, sizeof(bcm_msg.msg_head));
93
94         const struct timeval freq =  recurring_requests_.back()->get_timeout_clock().get_timeval_from_period();
95
96         bcm_msg.msg_head.opcode  = RX_SETUP;
97         bcm_msg.msg_head.flags = SETTIMER|RX_FILTER_ID;
98         bcm_msg.msg_head.ival2.tv_sec = freq.tv_sec;
99         bcm_msg.msg_head.ival2.tv_usec = freq.tv_usec;
100
101         // If it isn't an OBD2 CAN ID then just add a simple RX_SETUP job
102         if(can_id != OBD2_FUNCTIONAL_BROADCAST_ID) 
103         {
104                 bcm_msg.msg_head.can_id  = can_id;
105
106                 socket_ << bcm_msg;
107                         if(! socket_)
108                                 return -1;
109         }
110         else
111         {
112                 for(uint8_t i = 0; i < 8; i++)
113                 {
114                         can_id  =  OBD2_FUNCTIONAL_RESPONSE_START + i;
115                         bcm_msg.msg_head.can_id  = can_id;
116
117                         socket_ << bcm_msg;
118                         if(! socket_)
119                                 return -1;
120                 }
121         }
122
123         return 0;
124 }
125
126 /// @brief send function use by diagnostic library. Only one bus used for now
127 ///  so diagnostic request is sent using the default diagnostic bus not matter of
128 ///  which is specified in the diagnostic message definition.
129 ///
130 /// @param[in] arbitration_id - CAN arbitration ID to use when send message. OBD2 broadcast ID
131 ///  is 0x7DF by example.
132 /// @param[in] data - The data payload for the message. NULL is valid if size is also 0.
133 /// @param[in] size - The size of the data payload, in bytes.
134 ///
135 /// @return true if the CAN message was sent successfully. 
136 bool diagnostic_manager_t::shims_send(const uint32_t arbitration_id, const uint8_t* data, const uint8_t size)
137 {
138         diagnostic_manager_t& dm = configuration_t::instance().get_diagnostic_manager();
139         active_diagnostic_request_t* current_adr = dm.get_last_recurring_requests();
140         utils::socketcan_bcm_t& tx_socket = current_adr->get_socket();
141
142         // Make sure that socket has been opened.
143         if(! tx_socket)
144                 tx_socket.open(
145                         dm.get_can_bus());
146
147         struct utils::simple_bcm_msg bcm_msg;
148         struct can_frame cfd;
149
150         memset(&cfd, 0, sizeof(cfd));
151         memset(&bcm_msg.msg_head, 0, sizeof(bcm_msg.msg_head));
152
153         struct timeval freq = current_adr->get_frequency_clock().get_timeval_from_period();
154
155         bcm_msg.msg_head.opcode  = TX_SETUP;
156         bcm_msg.msg_head.can_id  = arbitration_id;
157         bcm_msg.msg_head.flags = SETTIMER|STARTTIMER|TX_CP_CAN_ID;
158         bcm_msg.msg_head.ival2.tv_sec = freq.tv_sec;
159         bcm_msg.msg_head.ival2.tv_usec = freq.tv_usec;
160         bcm_msg.msg_head.nframes = 1;
161         cfd.can_dlc = size;
162         ::memcpy(cfd.data, data, size);
163
164         bcm_msg.frames = cfd;
165
166         tx_socket << bcm_msg;
167         if(tx_socket)
168                 return true;
169         return false;
170 }
171
172 /// @brief The type signature for an optional logging function, if the user
173 /// wishes to provide one. It should print, store or otherwise display the
174 /// message.
175 ///
176 /// message - A format string to log using the given parameters.
177 /// ... (vargs) - the parameters for the format string.
178 ///
179 void diagnostic_manager_t::shims_logger(const char* format, ...)
180 {
181         va_list args;
182         va_start(args, format);
183
184         char buffer[256];
185         vsnprintf(buffer, 256, format, args);
186
187         DEBUG(binder_interface, "%s: %s", __FUNCTION__, buffer);
188 }
189
190 /// @brief The type signature for a... OpenXC TODO: not used yet.
191 void diagnostic_manager_t::shims_timer()
192 {}
193
194 std::string diagnostic_manager_t::get_can_bus()
195 {
196         return bus_;
197 }
198
199 active_diagnostic_request_t* diagnostic_manager_t::get_last_recurring_requests() const
200 {
201         return recurring_requests_.back();
202 }
203
204 /// @brief Return diagnostic manager shims member.
205 DiagnosticShims& diagnostic_manager_t::get_shims()
206 {
207         return shims_;
208 }
209
210 /// @brief Search for a specific active diagnostic request in the provided requests list
211 /// and erase it from the vector. This is useful at unsubscription to clean up the list otherwize
212 /// all received CAN messages will be passed to DiagnosticRequestHandle of all active diagnostic request
213 /// contained in the vector but no event if connected to, so we will decode uneeded request.
214 ///
215 /// @param[in] entry - a pointer of an active_diagnostic_request instance to clean up
216 /// @param[in] requests_list - a vector where to make the search and cleaning.
217 void diagnostic_manager_t::find_and_erase(active_diagnostic_request_t* entry, std::vector<active_diagnostic_request_t*>& requests_list)
218 {
219         auto i = std::find(requests_list.begin(), requests_list.end(), entry);
220         if ( i != requests_list.end())
221                 requests_list.erase(i);
222 }
223
224 // @brief TODO: implement cancel_request if needed... Don't know.
225 void diagnostic_manager_t::cancel_request(active_diagnostic_request_t* entry)
226 {
227         entry->get_socket().close();
228 }
229
230 /// @brief Cleanup a specific request if it isn't running and get complete. As it is almost
231 /// impossible to get that state for a recurring request without waiting for that, you can 
232 /// force the cleaning operation.
233 ///
234 /// @param[in] entry - the request to clean
235 /// @param[in] force - Force the cleaning or not ?
236 void diagnostic_manager_t::cleanup_request(active_diagnostic_request_t* entry, bool force)
237 {
238         if((force || (entry != nullptr && entry->response_received())))
239         {
240                 char request_string[128] = {0};
241                 diagnostic_request_to_string(&entry->get_handle()->request,
242                         request_string, sizeof(request_string));
243                 if(force && entry->get_recurring())
244                 {
245                         find_and_erase(entry, recurring_requests_);
246                         cancel_request(entry);
247                         DEBUG(binder_interface, "%s: Cancelling completed, recurring request: %s", __FUNCTION__, request_string);
248                 }
249                 else
250                 {
251                         DEBUG(binder_interface, "%s: Cancelling completed, non-recurring request: %s", __FUNCTION__, request_string);
252                         find_and_erase(entry, non_recurring_requests_);
253                         cancel_request(entry);
254                 }
255         }
256 }
257
258 /// @brief Clean up all requests lists, recurring and not recurring.
259 ///
260 /// @param[in] force - Force the cleaning or not ? If true, that will do
261 /// the same effect as a call to reset().
262 void diagnostic_manager_t::cleanup_active_requests(bool force)
263 {
264         for(auto& entry : non_recurring_requests_)
265                 if (entry != nullptr)
266                         cleanup_request(entry, force);
267
268         for(auto& entry : recurring_requests_)
269                 if (entry != nullptr)
270                         cleanup_request(entry, force);
271 }
272
273 /// @brief Will return the active_diagnostic_request_t pointer for theDiagnosticRequest or nullptr if
274 /// not found.
275 ///
276 /// @param[in] request - Search key, method will go through recurring list to see if it find that request
277 ///  holded by the DiagnosticHandle member.
278 active_diagnostic_request_t* diagnostic_manager_t::find_recurring_request(const DiagnosticRequest* request)
279 {
280         for (auto& entry : recurring_requests_)
281         {
282                 if(entry != nullptr)
283                 {
284                         if(diagnostic_request_equals(&entry->get_handle()->request, request))
285                         {
286                                 return entry;
287                                 break;
288                         }
289                 }
290         }
291         return nullptr;
292 }
293
294 /// @brief Add and send a new one-time diagnostic request.
295 ///
296 /// A one-time (aka non-recurring) request can existing in parallel with a
297 /// recurring request for the same PID or mode, that's not a problem.
298 ///
299 /// For an example, see the docs for addRecurringRequest. This function is very
300 /// similar but leaves out the frequencyHz parameter.
301 ///
302 /// @param[in] request - The parameters for the request.
303 /// @param[in] name - Human readable name this response, to be used when
304 ///      publishing received responses. TODO: If the name is NULL, the published output
305 ///      will use the raw OBD-II response format.
306 /// @param[in] wait_for_multiple_responses - If false, When any response is received
307 ///      for this request it will be removed from the active list. If true, the
308 ///      request will remain active until the timeout clock expires, to allow it
309 ///      to receive multiple response. Functional broadcast requests will always
310 ///      waint for the timeout, regardless of this parameter.
311 /// @param[in] decoder - An optional DiagnosticResponseDecoder to parse the payload of
312 ///      responses to this request. If the decoder is NULL, the output will
313 ///      include the raw payload instead of a parsed value.
314 /// @param[in] callback - An optional DiagnosticResponseCallback to be notified whenever a
315 ///      response is received for this request.
316 ///
317 /// @return true if the request was added successfully. Returns false if there
318 /// wasn't a free active request entry, if the frequency was too high or if the
319 /// CAN acceptance filters could not be configured,
320 active_diagnostic_request_t* diagnostic_manager_t::add_request(DiagnosticRequest* request, const std::string name,
321         bool wait_for_multiple_responses, const DiagnosticResponseDecoder decoder,
322         const DiagnosticResponseCallback callback)
323 {
324         cleanup_active_requests(false);
325
326         active_diagnostic_request_t* entry = nullptr;
327
328         if (non_recurring_requests_.size() <= MAX_SIMULTANEOUS_DIAG_REQUESTS)
329         {
330                 // TODO: implement Acceptance Filter
331                 //      if(updateRequiredAcceptanceFilters(bus, request)) {
332                         active_diagnostic_request_t* entry = new active_diagnostic_request_t(bus_, request, name,
333                                         wait_for_multiple_responses, decoder, callback, 0);
334                         entry->set_handle(shims_, request);
335
336                         char request_string[128] = {0};
337                         diagnostic_request_to_string(&entry->get_handle()->request, request_string,
338                                         sizeof(request_string));
339
340                         find_and_erase(entry, non_recurring_requests_);
341                         DEBUG(binder_interface, "%s: Added one-time diagnostic request on bus %s: %s", __FUNCTION__,
342                                         bus_.c_str(), request_string);
343
344                         non_recurring_requests_.push_back(entry);
345         }
346         else
347         {
348                 WARNING(binder_interface, "%s: There isn't enough request entry. Vector exhausted %d/%d", __FUNCTION__, (int)non_recurring_requests_.size(), MAX_SIMULTANEOUS_DIAG_REQUESTS);
349                 non_recurring_requests_.resize(MAX_SIMULTANEOUS_DIAG_REQUESTS);
350         }
351         return entry;
352 }
353
354 bool diagnostic_manager_t::validate_optional_request_attributes(float frequencyHz)
355 {
356         if(frequencyHz > MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ) {
357                 DEBUG(binder_interface, "%s: Requested recurring diagnostic frequency %lf is higher than maximum of %d", __FUNCTION__,
358                         frequencyHz, MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ);
359                 return false;
360         }
361         return true;
362 }
363
364 /// @brief Add and send a new recurring diagnostic request.
365 ///
366 /// At most one recurring request can be active for the same arbitration ID, mode
367 /// and (if set) PID on the same bus at one time. If you try and call
368 /// addRecurringRequest with the same key, it will return an error.
369 ///
370 /// TODO: This also adds any neccessary CAN acceptance filters so we can receive the
371 /// response. If the request is to the functional broadcast ID (0x7df) filters
372 /// are added for all functional addresses (0x7e8 to 0x7f0).
373 ///
374 /// Example:
375 ///
376 ///     // Creating a functional broadcast, mode 1 request for PID 2.
377 ///     DiagnosticRequest request = {
378 ///         arbitration_id: 0x7df,
379 ///         mode: 1,
380 ///         has_pid: true,
381 ///         pid: 2
382 ///     };
383 ///
384 ///     // Add a recurring request, to be sent at 1Hz, and published with the
385 ///     // name "my_pid_request"
386 ///     addRecurringRequest(&getConfiguration()->diagnosticsManager,
387 ///          canBus,
388 ///          &request,
389 ///          "my_pid_request",
390 ///          false,
391 ///          NULL,
392 ///          NULL,
393 ///          1);
394 ///
395 /// @param[in] request - The parameters for the request.
396 /// @param[in] name - An optional human readable name this response, to be used when
397 ///      publishing received responses. If the name is NULL, the published output
398 ///      will use the raw OBD-II response format.
399 /// @param[in] wait_for_multiple_responses - If false, When any response is received
400 ///      for this request it will be removed from the active list. If true, the
401 ///      request will remain active until the timeout clock expires, to allow it
402 ///      to receive multiple response. Functional broadcast requests will always
403 ///      waint for the timeout, regardless of this parameter.
404 /// @param[in] decoder - An optional DiagnosticResponseDecoder to parse the payload of
405 ///      responses to this request. If the decoder is NULL, the output will
406 ///      include the raw payload instead of a parsed value.
407 /// @param[in] callback - An optional DiagnosticResponseCallback to be notified whenever a
408 ///      response is received for this request.
409 /// @param[in] frequencyHz - The frequency (in Hz) to send the request. A frequency above
410 ///      MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ is not allowed, and will make this
411 ///      function return false.
412 ///
413 /// @return true if the request was added successfully. Returns false if there
414 /// was too much already running requests, if the frequency was too high TODO:or if the
415 /// CAN acceptance filters could not be configured,
416 active_diagnostic_request_t* diagnostic_manager_t::add_recurring_request(DiagnosticRequest* request, const char* name,
417                 bool wait_for_multiple_responses, const DiagnosticResponseDecoder decoder,
418                 const DiagnosticResponseCallback callback, float frequencyHz)
419 {
420         active_diagnostic_request_t* entry = nullptr;
421
422         if(!validate_optional_request_attributes(frequencyHz))
423                 return entry;
424
425         cleanup_active_requests(false);
426
427         if(find_recurring_request(request) == nullptr)
428         {
429                 if(recurring_requests_.size() <= MAX_SIMULTANEOUS_DIAG_REQUESTS)
430                 {
431                         // TODO: implement Acceptance Filter
432                         //if(updateRequiredAcceptanceFilters(bus, request)) {
433                         entry = new active_diagnostic_request_t(bus_, request, name,
434                                         wait_for_multiple_responses, decoder, callback, frequencyHz);
435                         recurring_requests_.push_back(entry);
436
437                         entry->set_handle(shims_, request);
438                         if(add_rx_filter(OBD2_FUNCTIONAL_BROADCAST_ID) < 0)
439                                 { recurring_requests_.pop_back(); }
440                         else
441                                 {
442                                         start_diagnostic_request(&shims_, entry->get_handle()); 
443                                         if(event_source_ == nullptr && sd_event_add_io(afb_daemon_get_event_loop(binder_interface->daemon), 
444                                                 &event_source_,
445                                                 socket_.socket(),
446                                                 EPOLLIN,
447                                                 read_message,
448                                                 nullptr) < 0)
449                                         {
450                                                 cleanup_request(entry, true);
451                                                 WARNING(binder_interface, "%s: signal: %s isn't supported. Canceling operation.", __FUNCTION__, entry->get_name().c_str());
452                                                 return entry;
453                                         }
454                                 }
455                 }
456                 else
457                 {
458                         WARNING(binder_interface, "%s: There isn't enough request entry. Vector exhausted %d/%d", __FUNCTION__, (int)recurring_requests_.size(), MAX_SIMULTANEOUS_DIAG_REQUESTS);
459                         recurring_requests_.resize(MAX_SIMULTANEOUS_DIAG_REQUESTS);
460                 }
461         }
462         else
463                 { DEBUG(binder_interface, "%s: Can't add request, one already exists with same key", __FUNCTION__);}
464         return entry;
465 }
466
467 /// @brief Will decode the diagnostic response and build the final openxc_VehicleMessage to return.
468 ///
469 /// @param[in] adr - A pointer to an active diagnostic request holding a valid diagnostic handle
470 /// @param[in] response - The response to decode from which the Vehicle message will be built and returned
471 ///
472 /// @return A filled openxc_VehicleMessage or a zeroed struct if there is an error.
473 openxc_VehicleMessage diagnostic_manager_t::relay_diagnostic_response(active_diagnostic_request_t* adr, const DiagnosticResponse& response)
474 {
475         openxc_VehicleMessage message = build_VehicleMessage();
476         float value = (float)diagnostic_payload_to_integer(&response);
477         if(adr->get_decoder() != nullptr)
478         {
479                 value = adr->get_decoder()(&response, value);
480         }
481
482         if((response.success && adr->get_name().size()) > 0)
483         {
484                 // If name, include 'value' instead of payload, and leave of response
485                 // details.
486                 message = build_VehicleMessage(build_SimpleMessage(adr->get_name(), build_DynamicField(value)));
487         }
488         else
489         {
490                 // If no name, send full details of response but still include 'value'
491                 // instead of 'payload' if they provided a decoder. The one case you
492                 // can't get is the full detailed response with 'value'. We could add
493                 // another parameter for that but it's onerous to carry that around.
494                 message = build_VehicleMessage(adr, response, value);
495         }
496
497         // If not success but completed then the pid isn't supported
498         if(!response.success)
499         {
500                 struct utils::signals_found found_signals;
501                 found_signals = utils::signals_manager_t::instance().find_signals(build_DynamicField(adr->get_name()));
502                 found_signals.diagnostic_messages.front()->set_supported(false);
503                 cleanup_request(adr, true);
504                 NOTICE(binder_interface, "%s: PID not supported or ill formed. Please unsubscribe from it. Error code : %d", __FUNCTION__, response.negative_response_code);
505                 message = build_VehicleMessage(build_SimpleMessage(adr->get_name(), build_DynamicField("This PID isn't supported by your vehicle.")));
506         }
507
508         if(adr->get_callback() != nullptr)
509         {
510                 adr->get_callback()(adr, &response, value);
511         }
512
513         // Reset the completed flag handle to make sure that it will be reprocessed the next time.
514         adr->get_handle()->success = false;
515         return message;
516 }
517
518 /// @brief Will take the CAN message and pass it to the receive functions that will process
519 /// diagnostic handle for each active diagnostic request then depending on the result we will 
520 /// return pass the diagnostic response to decode it.
521 ///
522 /// @param[in] entry - A pointer to an active diagnostic request holding a valid diagnostic handle
523 /// @param[in] cm - A raw CAN message.
524 ///
525 /// @return A pointer to a filled openxc_VehicleMessage or a nullptr if nothing has been found.
526 openxc_VehicleMessage diagnostic_manager_t::relay_diagnostic_handle(active_diagnostic_request_t* entry, const can_message_t& cm)
527 {
528         DiagnosticResponse response = diagnostic_receive_can_frame(&shims_, entry->get_handle(), cm.get_id(), cm.get_data(), cm.get_length());
529         if(response.completed && entry->get_handle()->completed)
530         {
531                 if(entry->get_handle()->success)
532                         return relay_diagnostic_response(entry, response);
533         }
534         else if(!response.completed && response.multi_frame)
535         {
536                 // Reset the timeout clock while completing the multi-frame receive
537                 entry->get_timeout_clock().tick();
538         }
539
540         return build_VehicleMessage();
541 }
542
543 /// @brief Find the active diagnostic request with the correct DiagnosticRequestHandle
544 /// member that will understand the CAN message using diagnostic_receive_can_frame function
545 /// from UDS-C library. Then decode it with an ad-hoc method.
546 ///
547 /// @param[in] cm - Raw CAN message received
548 ///
549 /// @return VehicleMessage with decoded value.
550 openxc_VehicleMessage diagnostic_manager_t::find_and_decode_adr(const can_message_t& cm)
551 {
552         openxc_VehicleMessage vehicle_message = build_VehicleMessage();
553
554         for ( auto entry : non_recurring_requests_)
555         {
556                 vehicle_message = relay_diagnostic_handle(entry, cm);
557                 if (is_valid(vehicle_message))
558                         return vehicle_message;
559         }
560
561         for ( auto entry : recurring_requests_)
562         {
563                 vehicle_message = relay_diagnostic_handle(entry, cm);
564                 if (is_valid(vehicle_message))
565                         return vehicle_message;
566         }
567
568         return vehicle_message;
569 }
570
571 /// @brief Tell if the CAN message received is a diagnostic response.
572 /// Request broadcast ID use 0x7DF and assigned ID goes from 0x7E0 to Ox7E7. That allows up to 8 ECU to respond 
573 /// at the same time. The response is the assigned ID + 0x8, so response ID can goes from 0x7E8 to 0x7EF.
574 ///
575 /// @param[in] cm - CAN message received from the socket.
576 ///
577 /// @return True if the active diagnostic request match the response.
578 bool diagnostic_manager_t::is_diagnostic_response(const can_message_t& cm)
579 {
580         if (cm.get_id() >= 0x7e8 && cm.get_id() <= 0x7ef)
581                         return true;
582         return false;
583 }