Check last value before send the event, if no change no event.
[apps/low-level-can-service.git] / CAN-binder / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <net/if.h>
19 #include <sys/socket.h>
20 #include <json-c/json.h>
21 #include <linux/can/raw.h>
22 #include <map>
23 #include <cerrno>
24 #include <vector>
25 #include <string>
26 #include <algorithm>
27
28 #include "can-bus.hpp"
29
30 #include "can-signals.hpp"
31 #include "can-decoder.hpp"
32 #include "../configuration.hpp"
33 #include "../utils/signals.hpp"
34 #include "../utils/openxc-utils.hpp"
35
36 extern "C"
37 {
38         #include <afb/afb-binding.h>
39 }
40
41 /// @brief Class constructor
42 ///
43 /// @param[in] conf_file - handle to the json configuration file.
44 can_bus_t::can_bus_t(utils::config_parser_t conf_file)
45         : conf_file_{conf_file}
46 {}
47
48 std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;
49
50 /// @brief Listen for all device sockets and fill can_messages_queue with them.
51 /// Reading blocks until message arrive on listened sockets.
52 ///
53 /// @return 0 if ok -1 if not
54 int can_bus_t::can_reader()
55 {
56         fd_set rfds;
57         int sock_max = INVALID_SOCKET;
58
59         FD_ZERO(&rfds);
60
61         for(auto& can_dev : can_devices_)
62         {
63                 FD_SET(can_dev.second->get_socket().socket(), &rfds);
64                 if (sock_max < can_dev.second->get_socket().socket())
65                         sock_max = can_dev.second->get_socket().socket();
66         }
67
68         int ret;
69         while(is_reading_)
70         {
71                 ret = select(sock_max + 1, &rfds, nullptr, nullptr, nullptr);
72
73                 if(ret == -1)
74                         perror("select()");
75                 else if(ret > 0)
76                 {
77                         for(const auto& s: can_devices_)
78                         {
79                                 if(FD_ISSET(s.second->get_socket().socket(), &rfds))
80                                 {
81                                         can_message_t msg;
82                                         s.second->get_socket() >> msg;
83                                         push_new_can_message(msg);
84                                         }
85                                 }
86                 }
87                 else
88                         printf("Timeout\n");
89         }
90         return 0;
91 }
92
93 /// @brief Will make the decoding operation on a classic CAN message. It will not
94 /// handle CAN commands nor diagnostic messages that have their own method to get
95 /// this happens.
96 ///
97 /// It will add to the vehicle_message queue the decoded message and tell the event push
98 /// thread to process it.
99 ///
100 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
101 ///
102 /// @return How many signals has been decoded.
103 int can_bus_t::process_can_signals(can_message_t& can_message)
104 {
105         int processed_signals = 0;
106         struct utils::signals_found signals;
107         openxc_DynamicField search_key, decoded_message;
108         openxc_VehicleMessage vehicle_message;
109         configuration_t& conf = configuration_t::instance();
110         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
111
112         // First we have to found which can_signal_t it is
113         search_key = build_DynamicField((double)can_message.get_id());
114         signals = sm.find_signals(search_key);
115
116         // Decoding the message ! Don't kill the messenger !
117         for(auto& sig : signals.can_signals)
118         {
119                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
120                 std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
121
122                 // DEBUG message to make easier debugger STL containers...
123                 //DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
124                 //DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
125                 //DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
126                 //DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name));
127                 if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
128                 {
129                         bool send = true;
130                         decoded_message = decoder_t::translateSignal(*sig, can_message, conf.get_can_signals(), &send);
131
132                         if(send)
133                         {
134                                 openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
135                                 vehicle_message = build_VehicleMessage(s_message);
136
137                                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
138                                 push_new_vehicle_message(vehicle_message);
139                         }
140                         processed_signals++;
141                 }
142         }
143
144         DEBUG(binder_interface, "%s: %d/%d CAN signals processed.", __FUNCTION__, processed_signals, (int)signals.can_signals.size());
145         return processed_signals;
146 }
147
148 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
149 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
150 /// the event push thread to process it.
151 ///
152 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
153 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
154 ///
155 /// @return How many signals has been decoded.
156 int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
157 {
158         int processed_signals = 0;
159
160         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
161
162         std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
163         std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
164
165         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
166         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
167                 (s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
168         {
169                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
170                 push_new_vehicle_message(vehicle_message);
171                 processed_signals++;
172         }
173
174         return processed_signals;
175 }
176
177 /// @brief thread to decoding raw CAN messages.
178 ///
179 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
180 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
181 ///
182 /// It will take from the can_message_q_ queue the next can message to process then it search
183 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
184 ///  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
185 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
186 ///  noopDecoder function that will operate on it.
187 ///
188 ///  TODO: make diagnostic messages parsing optionnal.
189 void can_bus_t::can_decode_message()
190 {
191         can_message_t can_message;
192
193         while(is_decoding_)
194         {
195                 {
196                         std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
197                         new_can_message_cv_.wait(can_message_lock);
198                         while(!can_message_q_.empty())
199                         {
200                                 can_message = next_can_message();
201
202                                 if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
203                                         process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
204                                 else
205                                         process_can_signals(can_message);
206                         }
207                 }
208                 new_decoded_can_message_.notify_one();
209         }
210 }
211
212 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
213 /// which are events that has to be pushed.
214 void can_bus_t::can_event_push()
215 {
216         openxc_VehicleMessage v_message;
217         openxc_SimpleMessage s_message;
218         json_object* jo;
219         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
220
221         while(is_pushing_)
222         {
223                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
224                 new_decoded_can_message_.wait(decoded_can_message_lock);
225                 while(!vehicle_message_q_.empty())
226                 {
227                         v_message = next_vehicle_message();
228
229                         s_message = get_simple_message(v_message);
230                         {
231                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
232                                 std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
233                                 if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
234                                 {
235                                         jo = json_object_new_object();
236                                         jsonify_simple(s_message, jo);
237                                         if(afb_event_push(s[std::string(s_message.name)], jo) == 0)
238                                                 on_no_clients(std::string(s_message.name));
239                                 }
240                         }
241                 }
242         }
243 }
244
245 /// @brief Will initialize threads that will decode
246 ///  and push subscribed events.
247 void can_bus_t::start_threads()
248 {
249         is_reading_ = true;
250         th_reading_ = std::thread(&can_bus_t::can_reader, this);
251         if(!th_reading_.joinable())
252                 is_reading_ = false;
253
254         is_decoding_ = true;
255         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
256         if(!th_decoding_.joinable())
257                 is_decoding_ = false;
258
259         is_pushing_ = true;
260         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
261         if(!th_pushing_.joinable())
262                 is_pushing_ = false;
263 }
264
265 /// @brief Will stop all threads holded by can_bus_t object
266 ///  which are decoding and pushing then will wait that's
267 /// they'll finish their job.
268 void can_bus_t::stop_threads()
269 {
270         is_reading_ = false;
271         is_decoding_ = false;
272         is_pushing_ = false;
273 }
274
275 /// @brief Will initialize can_bus_dev_t objects after reading
276 /// the configuration file passed in the constructor. All CAN buses
277 /// Initialized here will be added to a vector holding them for
278 /// inventory and later access.
279 ///
280 /// That will initialize CAN socket reading too using a new thread.
281 ///
282 /// @return 0 if ok, other if not.
283 int can_bus_t::init_can_dev()
284 {
285         std::vector<std::string> devices_name;
286         int i = 0;
287         size_t t;
288
289         if(conf_file_.check_conf())
290         {
291                 devices_name = conf_file_.get_devices_name();
292                 if (! devices_name.empty())
293                 {
294                         t = devices_name.size();
295
296                         for(const auto& device : devices_name)
297                         {
298                                 can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
299                                 if (can_bus_t::can_devices_[device]->open() >= 0)
300                                 {
301                                         can_bus_t::can_devices_[device]->configure();
302                                         DEBUG(binder_interface, "%s: Start reading thread", __FUNCTION__);
303                                         NOTICE(binder_interface, "%s: %s device opened and reading", __FUNCTION__, device.c_str());
304                                         //can_bus_t::can_devices_[device]->start_reading(*this);
305                                         i++;
306                                 }
307                                 else
308                                 {
309                                         ERROR(binder_interface, "%s: Can't open device %s", __FUNCTION__, device.c_str());
310                                         return 1;
311                                 }
312                         }
313                         NOTICE(binder_interface, "%s: Initialized %d/%d can bus device(s)", __FUNCTION__, i, (int)t);
314                         return 0;
315                 }
316                 ERROR(binder_interface, "%s: Error at CAN device initialization. No devices read from configuration file", __FUNCTION__);
317                 return 1;
318         }
319         ERROR(binder_interface, "%s: Can't read INI configuration file", __FUNCTION__);
320         return 2;
321 }
322
323 /// @brief return new_can_message_cv_ member
324 ///
325 /// @return  return new_can_message_cv_ member
326 std::condition_variable& can_bus_t::get_new_can_message_cv()
327 {
328         return new_can_message_cv_;
329 }
330
331 /// @brief return can_message_mutex_ member
332 ///
333 /// @return  return can_message_mutex_ member
334 std::mutex& can_bus_t::get_can_message_mutex()
335 {
336         return can_message_mutex_;
337 }
338
339 /// @brief Return first can_message_t on the queue
340 ///
341 /// @return a can_message_t
342 can_message_t can_bus_t::next_can_message()
343 {
344         can_message_t can_msg;
345
346         if(!can_message_q_.empty())
347         {
348                 can_msg = can_message_q_.front();
349                 can_message_q_.pop();
350                 DEBUG(binder_interface, "%s: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", __FUNCTION__, can_msg.get_id(), can_msg.get_length(),
351                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
352                 return can_msg;
353         }
354
355         return can_msg;
356 }
357
358 /// @brief Push a can_message_t into the queue
359 ///
360 /// @param[in] can_msg - the const reference can_message_t object to push into the queue
361 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
362 {
363         can_message_q_.push(can_msg);
364 }
365
366 /// @brief Return first openxc_VehicleMessage on the queue
367 ///
368 /// @return a openxc_VehicleMessage containing a decoded can message
369 openxc_VehicleMessage can_bus_t::next_vehicle_message()
370 {
371         openxc_VehicleMessage v_msg;
372
373         if(! vehicle_message_q_.empty())
374         {
375                 v_msg = vehicle_message_q_.front();
376                 vehicle_message_q_.pop();
377                 DEBUG(binder_interface, "%s: next vehicle message poped", __FUNCTION__);
378                 return v_msg;
379         }
380
381         return v_msg;
382 }
383
384 /// @brief Push a openxc_VehicleMessage into the queue
385 ///
386 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
387 void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
388 {
389         vehicle_message_q_.push(v_msg);
390 }
391
392 /// @brief Create a RX_SETUP receive job for the BCM socket of a CAN signal.
393 ///
394 /// @return 0 if ok -1 if not.
395         int can_bus_t::create_rx_filter(const can_signal_t& s)
396         {
397                 const std::string& bus  = s.get_message().get_bus_name();
398                 return can_bus_t::can_devices_[bus]->create_rx_filter(s);
399         }
400
401 /// @brief Return a map with the can_bus_dev_t initialized
402 ///
403 /// @return map can_bus_dev_m_ map
404 const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
405 {
406         return can_bus_t::can_devices_;
407 }
408
409 /// @brief Return the shared pointer on the can_bus_dev_t initialized 
410 /// with device_name "bus"
411 ///
412 /// @param[in] bus - CAN bus device name to retrieve.
413 ///
414 /// @return A shared pointer on an object can_bus_dev_t
415 std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
416 {
417         return can_bus_t::can_devices_[bus];
418 }