Reworked reading CAN devices from BCM socket.
[apps/agl-service-can-low-level.git] / CAN-binder / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <net/if.h>
19 #include <sys/socket.h>
20 #include <json-c/json.h>
21 #include <linux/can/raw.h>
22 #include <map>
23 #include <cerrno>
24 #include <vector>
25 #include <string>
26 #include <algorithm>
27
28 #include "can-bus.hpp"
29
30 #include "can-signals.hpp"
31 #include "can-decoder.hpp"
32 #include "../configuration.hpp"
33 #include "../utils/signals.hpp"
34 #include "../utils/openxc-utils.hpp"
35
36 extern "C"
37 {
38         #include <afb/afb-binding.h>
39 }
40
41 /// @brief Class constructor
42 ///
43 /// @param[in] conf_file - handle to the json configuration file.
44 can_bus_t::can_bus_t(utils::config_parser_t conf_file)
45         : conf_file_{conf_file}
46 {}
47
48 std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;
49
50 /// @brief Listen for all device sockets and fill can_messages_queue with them.
51 /// Reading blocks until message arrive on listened sockets.
52 ///
53 /// @return 0 if ok -1 if not
54 int can_bus_t::can_reader()
55 {
56         fd_set rfds;
57         int sock_max = INVALID_SOCKET;
58
59         FD_ZERO(&rfds);
60
61         for(auto& can_dev : can_devices_)
62         {
63                 FD_SET(can_dev.second->get_socket().socket(), &rfds);
64                 if (sock_max < can_dev.second->get_socket().socket())
65                         sock_max = can_dev.second->get_socket().socket();
66         }
67
68         int ret;
69         while(is_reading_)
70         {
71                 ret = select(sock_max + 1, &rfds, nullptr, nullptr, nullptr);
72
73                 if(ret == -1)
74                         perror("select()");
75                 else if(ret > 0)
76                 {
77                         for(const auto& s: can_devices_)
78                         {
79                                 if(FD_ISSET(s.second->get_socket().socket(), &rfds))
80                                 {
81                                         can_message_t msg;
82                                         s.second->get_socket() >> msg;
83                                         push_new_can_message(msg);
84                                         }
85                                 }
86                 }
87                 else
88                         printf("Timeout\n");
89         }
90         return 0;
91 }
92
93 /// @brief Will make the decoding operation on a classic CAN message. It will not
94 /// handle CAN commands nor diagnostic messages that have their own method to get
95 /// this happens.
96 ///
97 /// It will add to the vehicle_message queue the decoded message and tell the event push
98 /// thread to process it.
99 ///
100 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
101 ///
102 /// @return How many signals has been decoded.
103 int can_bus_t::process_can_signals(can_message_t& can_message)
104 {
105         int processed_signals = 0;
106         struct utils::signals_found signals;
107         openxc_DynamicField search_key, decoded_message;
108         openxc_VehicleMessage vehicle_message;
109         configuration_t& conf = configuration_t::instance();
110         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
111
112         // First we have to found which can_signal_t it is
113         search_key = build_DynamicField((double)can_message.get_id());
114         signals = sm.find_signals(search_key);
115
116         // Decoding the message ! Don't kill the messenger !
117         for(auto& sig : signals.can_signals)
118         {
119                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
120                 std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
121
122                 // DEBUG message to make easier debugger STL containers...
123                 //DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
124                 //DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
125                 //DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
126                 //DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name));
127                 if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
128                 {
129                         decoded_message = decoder_t::translateSignal(*sig, can_message, conf.get_can_signals());
130
131                         openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
132                         vehicle_message = build_VehicleMessage(s_message);
133
134                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
135                         push_new_vehicle_message(vehicle_message);
136                         processed_signals++;
137                 }
138         }
139
140         DEBUG(binder_interface, "%s: %d/%d CAN signals processed.", __FUNCTION__, processed_signals, (int)signals.can_signals.size());
141         return processed_signals;
142 }
143
144 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
145 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
146 /// the event push thread to process it.
147 ///
148 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
149 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
150 ///
151 /// @return How many signals has been decoded.
152 int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
153 {
154         int processed_signals = 0;
155
156         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
157
158         std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
159         std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
160
161         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
162         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
163                 (s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
164         {
165                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
166                 push_new_vehicle_message(vehicle_message);
167                 processed_signals++;
168         }
169
170         return processed_signals;
171 }
172
173 /// @brief thread to decoding raw CAN messages.
174 ///
175 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
176 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
177 ///
178 /// It will take from the can_message_q_ queue the next can message to process then it search
179 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
180 ///  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
181 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
182 ///  noopDecoder function that will operate on it.
183 ///
184 ///  TODO: make diagnostic messages parsing optionnal.
185 void can_bus_t::can_decode_message()
186 {
187         can_message_t can_message;
188
189         while(is_decoding_)
190         {
191                 {
192                         std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
193                         new_can_message_cv_.wait(can_message_lock);
194                         while(!can_message_q_.empty())
195                         {
196                                 can_message = next_can_message();
197
198                                 if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
199                                         process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
200                                 else
201                                         process_can_signals(can_message);
202                         }
203                 }
204                 new_decoded_can_message_.notify_one();
205         }
206 }
207
208 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
209 /// which are events that has to be pushed.
210 void can_bus_t::can_event_push()
211 {
212         openxc_VehicleMessage v_message;
213         openxc_SimpleMessage s_message;
214         json_object* jo;
215         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
216
217         while(is_pushing_)
218         {
219                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
220                 new_decoded_can_message_.wait(decoded_can_message_lock);
221                 while(!vehicle_message_q_.empty())
222                 {
223                         v_message = next_vehicle_message();
224
225                         s_message = get_simple_message(v_message);
226                         {
227                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
228                                 std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
229                                 if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
230                                 {
231                                         jo = json_object_new_object();
232                                         jsonify_simple(s_message, jo);
233                                         if(afb_event_push(s[std::string(s_message.name)], jo) == 0)
234                                                 on_no_clients(std::string(s_message.name));
235                                 }
236                         }
237                 }
238         }
239 }
240
241 /// @brief Will initialize threads that will decode
242 ///  and push subscribed events.
243 void can_bus_t::start_threads()
244 {
245         is_reading_ = true;
246         th_reading_ = std::thread(&can_bus_t::can_reader, this);
247         if(!th_reading_.joinable())
248                 is_reading_ = false;
249
250         is_decoding_ = true;
251         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
252         if(!th_decoding_.joinable())
253                 is_decoding_ = false;
254
255         is_pushing_ = true;
256         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
257         if(!th_pushing_.joinable())
258                 is_pushing_ = false;
259 }
260
261 /// @brief Will stop all threads holded by can_bus_t object
262 ///  which are decoding and pushing then will wait that's
263 /// they'll finish their job.
264 void can_bus_t::stop_threads()
265 {
266         is_reading_ = false;
267         is_decoding_ = false;
268         is_pushing_ = false;
269 }
270
271 /// @brief Will initialize can_bus_dev_t objects after reading
272 /// the configuration file passed in the constructor. All CAN buses
273 /// Initialized here will be added to a vector holding them for
274 /// inventory and later access.
275 ///
276 /// That will initialize CAN socket reading too using a new thread.
277 ///
278 /// @return 0 if ok, other if not.
279 int can_bus_t::init_can_dev()
280 {
281         std::vector<std::string> devices_name;
282         int i = 0;
283         size_t t;
284
285         if(conf_file_.check_conf())
286         {
287                 devices_name = conf_file_.get_devices_name();
288                 if (! devices_name.empty())
289                 {
290                         t = devices_name.size();
291
292                         for(const auto& device : devices_name)
293                         {
294                                 can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
295                                 if (can_bus_t::can_devices_[device]->open() >= 0)
296                                 {
297                                         can_bus_t::can_devices_[device]->configure();
298                                         DEBUG(binder_interface, "%s: Start reading thread", __FUNCTION__);
299                                         NOTICE(binder_interface, "%s: %s device opened and reading", __FUNCTION__, device.c_str());
300                                         //can_bus_t::can_devices_[device]->start_reading(*this);
301                                         i++;
302                                 }
303                                 else
304                                 {
305                                         ERROR(binder_interface, "%s: Can't open device %s", __FUNCTION__, device.c_str());
306                                         return 1;
307                                 }
308                         }
309                         NOTICE(binder_interface, "%s: Initialized %d/%d can bus device(s)", __FUNCTION__, i, (int)t);
310                         return 0;
311                 }
312                 ERROR(binder_interface, "%s: Error at CAN device initialization. No devices read from configuration file", __FUNCTION__);
313                 return 1;
314         }
315         ERROR(binder_interface, "%s: Can't read INI configuration file", __FUNCTION__);
316         return 2;
317 }
318
319 /// @brief return new_can_message_cv_ member
320 ///
321 /// @return  return new_can_message_cv_ member
322 std::condition_variable& can_bus_t::get_new_can_message_cv()
323 {
324         return new_can_message_cv_;
325 }
326
327 /// @brief return can_message_mutex_ member
328 ///
329 /// @return  return can_message_mutex_ member
330 std::mutex& can_bus_t::get_can_message_mutex()
331 {
332         return can_message_mutex_;
333 }
334
335 /// @brief Return first can_message_t on the queue
336 ///
337 /// @return a can_message_t
338 can_message_t can_bus_t::next_can_message()
339 {
340         can_message_t can_msg;
341
342         if(!can_message_q_.empty())
343         {
344                 can_msg = can_message_q_.front();
345                 can_message_q_.pop();
346                 DEBUG(binder_interface, "%s: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", __FUNCTION__, can_msg.get_id(), can_msg.get_length(),
347                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
348                 return can_msg;
349         }
350
351         return can_msg;
352 }
353
354 /// @brief Push a can_message_t into the queue
355 ///
356 /// @param[in] can_msg - the const reference can_message_t object to push into the queue
357 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
358 {
359         can_message_q_.push(can_msg);
360 }
361
362 /// @brief Return first openxc_VehicleMessage on the queue
363 ///
364 /// @return a openxc_VehicleMessage containing a decoded can message
365 openxc_VehicleMessage can_bus_t::next_vehicle_message()
366 {
367         openxc_VehicleMessage v_msg;
368
369         if(! vehicle_message_q_.empty())
370         {
371                 v_msg = vehicle_message_q_.front();
372                 vehicle_message_q_.pop();
373                 DEBUG(binder_interface, "%s: next vehicle message poped", __FUNCTION__);
374                 return v_msg;
375         }
376
377         return v_msg;
378 }
379
380 /// @brief Push a openxc_VehicleMessage into the queue
381 ///
382 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
383 void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
384 {
385         vehicle_message_q_.push(v_msg);
386 }
387
388 /// @brief Create a RX_SETUP receive job for the BCM socket of a CAN signal.
389 ///
390 /// @return 0 if ok -1 if not.
391         int can_bus_t::create_rx_filter(const can_signal_t& s)
392         {
393                 const std::string& bus  = s.get_message().get_bus_name();
394                 return can_bus_t::can_devices_[bus]->create_rx_filter(s);
395         }
396
397 /// @brief Return a map with the can_bus_dev_t initialized
398 ///
399 /// @return map can_bus_dev_m_ map
400 const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
401 {
402         return can_bus_t::can_devices_;
403 }
404
405 /// @brief Return the shared pointer on the can_bus_dev_t initialized 
406 /// with device_name "bus"
407 ///
408 /// @param[in] bus - CAN bus device name to retrieve.
409 ///
410 /// @return A shared pointer on an object can_bus_dev_t
411 std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
412 {
413         return can_bus_t::can_devices_[bus];
414 }