Fix: Add notifying decoding thread if there is new messages.
[apps/low-level-can-service.git] / CAN-binder / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <net/if.h>
19 #include <sys/socket.h>
20 #include <json-c/json.h>
21 #include <linux/can/raw.h>
22 #include <map>
23 #include <cerrno>
24 #include <vector>
25 #include <string>
26 #include <algorithm>
27
28 #include "can-bus.hpp"
29
30 #include "can-signals.hpp"
31 #include "can-decoder.hpp"
32 #include "../configuration.hpp"
33 #include "../utils/signals.hpp"
34 #include "../utils/openxc-utils.hpp"
35
36 extern "C"
37 {
38         #include <afb/afb-binding.h>
39 }
40
41 /// @brief Class constructor
42 ///
43 /// @param[in] conf_file - handle to the json configuration file.
44 can_bus_t::can_bus_t(utils::config_parser_t conf_file)
45         : conf_file_{conf_file}
46 {}
47
48 std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;
49
50 /// @brief Listen for all device sockets and fill can_messages_queue with them.
51 /// Reading blocks until message arrive on listened sockets.
52 ///
53 /// @return 0 if ok -1 if not
54 int can_bus_t::can_reader()
55 {
56         fd_set rfds;
57         int sock_max = INVALID_SOCKET;
58
59         FD_ZERO(&rfds);
60
61         for(auto& can_dev : can_devices_)
62         {
63                 FD_SET(can_dev.second->get_socket().socket(), &rfds);
64                 if (sock_max < can_dev.second->get_socket().socket())
65                         sock_max = can_dev.second->get_socket().socket();
66         }
67
68         int ret;
69         while(is_reading_)
70         {
71                 ret = select(sock_max + 1, &rfds, nullptr, nullptr, nullptr);
72
73                 if(ret == -1)
74                         perror("select()");
75                 else if(ret > 0)
76                 {
77                         for(const auto& s: can_devices_)
78                         {
79                                 if(FD_ISSET(s.second->get_socket().socket(), &rfds))
80                                 {
81                                         can_message_t msg;
82                                         s.second->get_socket() >> msg;
83                                         std::lock_guard<std::mutex> can_message_lock(get_can_message_mutex());
84                                         { push_new_can_message(msg); }
85                                         get_new_can_message_cv().notify_one();
86                                         }
87                                 }
88                 }
89                 else
90                         printf("Timeout\n");
91         }
92         return 0;
93 }
94
95 /// @brief Will make the decoding operation on a classic CAN message. It will not
96 /// handle CAN commands nor diagnostic messages that have their own method to get
97 /// this happens.
98 ///
99 /// It will add to the vehicle_message queue the decoded message and tell the event push
100 /// thread to process it.
101 ///
102 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
103 ///
104 /// @return How many signals has been decoded.
105 int can_bus_t::process_can_signals(can_message_t& can_message)
106 {
107         int processed_signals = 0;
108         struct utils::signals_found signals;
109         openxc_DynamicField search_key, decoded_message;
110         openxc_VehicleMessage vehicle_message;
111         configuration_t& conf = configuration_t::instance();
112         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
113
114         // First we have to found which can_signal_t it is
115         search_key = build_DynamicField((double)can_message.get_id());
116         signals = sm.find_signals(search_key);
117
118         // Decoding the message ! Don't kill the messenger !
119         for(auto& sig : signals.can_signals)
120         {
121                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
122                 std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
123
124                 // DEBUG message to make easier debugger STL containers...
125                 //DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
126                 //DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
127                 //DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
128                 //DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name));
129                 if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
130                 {
131                         bool send = true;
132                         decoded_message = decoder_t::translateSignal(*sig, can_message, conf.get_can_signals(), &send);
133
134                         if(send)
135                         {
136                                 openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
137                                 vehicle_message = build_VehicleMessage(s_message);
138
139                                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
140                                 push_new_vehicle_message(vehicle_message);
141                         }
142                         processed_signals++;
143                 }
144         }
145
146         DEBUG(binder_interface, "%s: %d/%d CAN signals processed.", __FUNCTION__, processed_signals, (int)signals.can_signals.size());
147         return processed_signals;
148 }
149
150 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
151 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
152 /// the event push thread to process it.
153 ///
154 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
155 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
156 ///
157 /// @return How many signals has been decoded.
158 int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
159 {
160         int processed_signals = 0;
161
162         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
163
164         std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
165         std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
166
167         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
168         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
169                 (s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
170         {
171                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
172                 push_new_vehicle_message(vehicle_message);
173                 processed_signals++;
174         }
175
176         return processed_signals;
177 }
178
179 /// @brief thread to decoding raw CAN messages.
180 ///
181 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
182 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
183 ///
184 /// It will take from the can_message_q_ queue the next can message to process then it search
185 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
186 ///  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
187 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
188 ///  noopDecoder function that will operate on it.
189 ///
190 ///  TODO: make diagnostic messages parsing optionnal.
191 void can_bus_t::can_decode_message()
192 {
193         can_message_t can_message;
194
195         while(is_decoding_)
196         {
197                 {
198                         std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
199                         new_can_message_cv_.wait(can_message_lock);
200                         while(!can_message_q_.empty())
201                         {
202                                 can_message = next_can_message();
203
204                                 if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
205                                         process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
206                                 else
207                                         process_can_signals(can_message);
208                         }
209                 }
210                 new_decoded_can_message_.notify_one();
211         }
212 }
213
214 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
215 /// which are events that has to be pushed.
216 void can_bus_t::can_event_push()
217 {
218         openxc_VehicleMessage v_message;
219         openxc_SimpleMessage s_message;
220         json_object* jo;
221         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
222
223         while(is_pushing_)
224         {
225                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
226                 new_decoded_can_message_.wait(decoded_can_message_lock);
227                 while(!vehicle_message_q_.empty())
228                 {
229                         v_message = next_vehicle_message();
230
231                         s_message = get_simple_message(v_message);
232                         {
233                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
234                                 std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
235                                 if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
236                                 {
237                                         jo = json_object_new_object();
238                                         jsonify_simple(s_message, jo);
239                                         if(afb_event_push(s[std::string(s_message.name)], jo) == 0)
240                                                 on_no_clients(std::string(s_message.name));
241                                 }
242                         }
243                 }
244         }
245 }
246
247 /// @brief Will initialize threads that will decode
248 ///  and push subscribed events.
249 void can_bus_t::start_threads()
250 {
251         is_reading_ = true;
252         th_reading_ = std::thread(&can_bus_t::can_reader, this);
253         if(!th_reading_.joinable())
254                 is_reading_ = false;
255
256         is_decoding_ = true;
257         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
258         if(!th_decoding_.joinable())
259                 is_decoding_ = false;
260
261         is_pushing_ = true;
262         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
263         if(!th_pushing_.joinable())
264                 is_pushing_ = false;
265 }
266
267 /// @brief Will stop all threads holded by can_bus_t object
268 ///  which are decoding and pushing then will wait that's
269 /// they'll finish their job.
270 void can_bus_t::stop_threads()
271 {
272         is_reading_ = false;
273         is_decoding_ = false;
274         is_pushing_ = false;
275 }
276
277 /// @brief Will initialize can_bus_dev_t objects after reading
278 /// the configuration file passed in the constructor. All CAN buses
279 /// Initialized here will be added to a vector holding them for
280 /// inventory and later access.
281 ///
282 /// That will initialize CAN socket reading too using a new thread.
283 ///
284 /// @return 0 if ok, other if not.
285 int can_bus_t::init_can_dev()
286 {
287         std::vector<std::string> devices_name;
288         int i = 0;
289         size_t t;
290
291         if(conf_file_.check_conf())
292         {
293                 devices_name = conf_file_.get_devices_name();
294                 if (! devices_name.empty())
295                 {
296                         t = devices_name.size();
297
298                         for(const auto& device : devices_name)
299                         {
300                                 can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
301                                 if (can_bus_t::can_devices_[device]->open() >= 0)
302                                 {
303                                         can_bus_t::can_devices_[device]->configure();
304                                         DEBUG(binder_interface, "%s: Start reading thread", __FUNCTION__);
305                                         NOTICE(binder_interface, "%s: %s device opened and reading", __FUNCTION__, device.c_str());
306                                         //can_bus_t::can_devices_[device]->start_reading(*this);
307                                         i++;
308                                 }
309                                 else
310                                 {
311                                         ERROR(binder_interface, "%s: Can't open device %s", __FUNCTION__, device.c_str());
312                                         return 1;
313                                 }
314                         }
315                         NOTICE(binder_interface, "%s: Initialized %d/%d can bus device(s)", __FUNCTION__, i, (int)t);
316                         return 0;
317                 }
318                 ERROR(binder_interface, "%s: Error at CAN device initialization. No devices read from configuration file", __FUNCTION__);
319                 return 1;
320         }
321         ERROR(binder_interface, "%s: Can't read INI configuration file", __FUNCTION__);
322         return 2;
323 }
324
325 /// @brief return new_can_message_cv_ member
326 ///
327 /// @return  return new_can_message_cv_ member
328 std::condition_variable& can_bus_t::get_new_can_message_cv()
329 {
330         return new_can_message_cv_;
331 }
332
333 /// @brief return can_message_mutex_ member
334 ///
335 /// @return  return can_message_mutex_ member
336 std::mutex& can_bus_t::get_can_message_mutex()
337 {
338         return can_message_mutex_;
339 }
340
341 /// @brief Return first can_message_t on the queue
342 ///
343 /// @return a can_message_t
344 can_message_t can_bus_t::next_can_message()
345 {
346         can_message_t can_msg;
347
348         if(!can_message_q_.empty())
349         {
350                 can_msg = can_message_q_.front();
351                 can_message_q_.pop();
352                 DEBUG(binder_interface, "%s: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", __FUNCTION__, can_msg.get_id(), can_msg.get_length(),
353                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
354                 return can_msg;
355         }
356
357         return can_msg;
358 }
359
360 /// @brief Push a can_message_t into the queue
361 ///
362 /// @param[in] can_msg - the const reference can_message_t object to push into the queue
363 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
364 {
365         can_message_q_.push(can_msg);
366 }
367
368 /// @brief Return first openxc_VehicleMessage on the queue
369 ///
370 /// @return a openxc_VehicleMessage containing a decoded can message
371 openxc_VehicleMessage can_bus_t::next_vehicle_message()
372 {
373         openxc_VehicleMessage v_msg;
374
375         if(! vehicle_message_q_.empty())
376         {
377                 v_msg = vehicle_message_q_.front();
378                 vehicle_message_q_.pop();
379                 DEBUG(binder_interface, "%s: next vehicle message poped", __FUNCTION__);
380                 return v_msg;
381         }
382
383         return v_msg;
384 }
385
386 /// @brief Push a openxc_VehicleMessage into the queue
387 ///
388 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
389 void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
390 {
391         vehicle_message_q_.push(v_msg);
392 }
393
394 /// @brief Create a RX_SETUP receive job for the BCM socket of a CAN signal.
395 ///
396 /// @return 0 if ok -1 if not.
397         int can_bus_t::create_rx_filter(const can_signal_t& s)
398         {
399                 const std::string& bus  = s.get_message().get_bus_name();
400                 return can_bus_t::can_devices_[bus]->create_rx_filter(s);
401         }
402
403 /// @brief Return a map with the can_bus_dev_t initialized
404 ///
405 /// @return map can_bus_dev_m_ map
406 const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
407 {
408         return can_bus_t::can_devices_;
409 }
410
411 /// @brief Return the shared pointer on the can_bus_dev_t initialized 
412 /// with device_name "bus"
413 ///
414 /// @param[in] bus - CAN bus device name to retrieve.
415 ///
416 /// @return A shared pointer on an object can_bus_dev_t
417 std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
418 {
419         return can_bus_t::can_devices_[bus];
420 }