Cleaning
[apps/agl-service-can-low-level.git] / CAN-binder / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <net/if.h>
19 #include <sys/socket.h>
20 #include <json-c/json.h>
21 #include <linux/can/raw.h>
22 #include <map>
23 #include <cerrno>
24 #include <vector>
25 #include <string>
26 #include <algorithm>
27
28 #include "can-bus.hpp"
29
30 #include "can-signals.hpp"
31 #include "can-decoder.hpp"
32 #include "../binding/configuration.hpp"
33 #include "../utils/signals.hpp"
34 #include "../utils/openxc-utils.hpp"
35
36 extern "C"
37 {
38         #include <afb/afb-binding.h>
39 }
40
41 /// @brief Class constructor
42 ///
43 /// @param[in] conf_file - handle to the json configuration file.
44 can_bus_t::can_bus_t(utils::config_parser_t conf_file)
45         : conf_file_{conf_file}
46 {}
47
48 std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;
49
50 /// @brief Will make the decoding operation on a classic CAN message. It will not
51 /// handle CAN commands nor diagnostic messages that have their own method to get
52 /// this happens.
53 ///
54 /// It will add to the vehicle_message queue the decoded message and tell the event push
55 /// thread to process it.
56 ///
57 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
58 ///
59 /// @return How many signals has been decoded.
60 int can_bus_t::process_can_signals(const can_message_t& can_message)
61 {
62         int processed_signals = 0;
63         struct utils::signals_found signals;
64         openxc_DynamicField search_key, decoded_message;
65         openxc_VehicleMessage vehicle_message;
66         configuration_t& conf = configuration_t::instance();
67         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
68
69         // First we have to found which can_signal_t it is
70         search_key = build_DynamicField((double)can_message.get_id());
71         signals = sm.find_signals(search_key);
72
73         // Decoding the message ! Don't kill the messenger !
74         for(const auto& sig : signals.can_signals)
75         {
76                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
77                 std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
78
79                 if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
80                 {
81                         bool send = true;
82                         decoded_message = decoder_t::translateSignal(*sig, can_message, conf.get_can_signals(), &send);
83
84                         if(send)
85                         {
86                                 openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
87                                 vehicle_message = build_VehicleMessage(s_message);
88
89                                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
90                                 push_new_vehicle_message(vehicle_message);
91                         }
92                         processed_signals++;
93                 }
94         }
95
96         DEBUG(binder_interface, "%s: %d/%d CAN signals processed.", __FUNCTION__, processed_signals, (int)signals.can_signals.size());
97         return processed_signals;
98 }
99
100 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
101 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
102 /// the event push thread to process it.
103 ///
104 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
105 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
106 ///
107 /// @return How many signals has been decoded.
108 int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
109 {
110         int processed_signals = 0;
111
112         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
113
114         std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
115         std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
116
117         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
118         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
119                 (s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
120         {
121                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
122                 push_new_vehicle_message(vehicle_message);
123                 processed_signals++;
124         }
125
126         return processed_signals;
127 }
128
129 /// @brief thread to decoding raw CAN messages.
130 ///
131 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
132 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
133 ///
134 /// It will take from the can_message_q_ queue the next can message to process then it search
135 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
136 ///  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
137 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
138 ///  noopDecoder function that will operate on it.
139 ///
140 ///  TODO: make diagnostic messages parsing optionnal.
141 void can_bus_t::can_decode_message()
142 {
143         can_message_t can_message;
144
145         while(is_decoding_)
146         {
147                 {
148                         std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
149                         new_can_message_cv_.wait(can_message_lock);
150                         while(!can_message_q_.empty())
151                         {
152                                 can_message = next_can_message();
153
154                                 if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
155                                         process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
156                                 else
157                                         process_can_signals(can_message);
158                         }
159                 }
160                 new_decoded_can_message_.notify_one();
161         }
162 }
163
164 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
165 /// which are events that has to be pushed.
166 void can_bus_t::can_event_push()
167 {
168         openxc_VehicleMessage v_message;
169         openxc_SimpleMessage s_message;
170         json_object* jo;
171         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
172
173         while(is_pushing_)
174         {
175                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
176                 new_decoded_can_message_.wait(decoded_can_message_lock);
177                 while(!vehicle_message_q_.empty())
178                 {
179                         v_message = next_vehicle_message();
180
181                         s_message = get_simple_message(v_message);
182                         {
183                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
184                                 std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
185                                 if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
186                                 {
187                                         jo = json_object_new_object();
188                                         jsonify_simple(s_message, jo);
189                                         if(afb_event_push(s[std::string(s_message.name)], jo) == 0)
190                                                 on_no_clients(std::string(s_message.name));
191                                 }
192                         }
193                 }
194         }
195 }
196
197 /// @brief Will initialize threads that will decode
198 ///  and push subscribed events.
199 void can_bus_t::start_threads()
200 {
201         is_decoding_ = true;
202         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
203         if(!th_decoding_.joinable())
204                 is_decoding_ = false;
205
206         is_pushing_ = true;
207         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
208         if(!th_pushing_.joinable())
209                 is_pushing_ = false;
210 }
211
212 /// @brief Will stop all threads holded by can_bus_t object
213 ///  which are decoding and pushing then will wait that's
214 /// they'll finish their job.
215 void can_bus_t::stop_threads()
216 {
217         is_decoding_ = false;
218         is_pushing_ = false;
219 }
220
221 /// @brief Will initialize can_bus_dev_t objects after reading
222 /// the configuration file passed in the constructor. All CAN buses
223 /// Initialized here will be added to a vector holding them for
224 /// inventory and later access.
225 ///
226 /// That will initialize CAN socket reading too using a new thread.
227 ///
228 /// @return 0 if ok, other if not.
229 int can_bus_t::init_can_dev()
230 {
231         std::vector<std::string> devices_name;
232         int i = 0;
233         size_t t;
234
235         if(conf_file_.check_conf())
236         {
237                 devices_name = conf_file_.get_devices_name();
238                 if (! devices_name.empty())
239                 {
240                         t = devices_name.size();
241
242                         for(const auto& device : devices_name)
243                         {
244                                 can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
245                                 if (can_bus_t::can_devices_[device]->open() >= 0)
246                                 {
247                                         can_bus_t::can_devices_[device]->configure();
248                                         DEBUG(binder_interface, "%s: Start reading thread", __FUNCTION__);
249                                         NOTICE(binder_interface, "%s: %s device opened and reading", __FUNCTION__, device.c_str());
250                                         //can_bus_t::can_devices_[device]->start_reading(*this);
251                                         i++;
252                                 }
253                                 else
254                                 {
255                                         ERROR(binder_interface, "%s: Can't open device %s", __FUNCTION__, device.c_str());
256                                         return 1;
257                                 }
258                         }
259                         NOTICE(binder_interface, "%s: Initialized %d/%d can bus device(s)", __FUNCTION__, i, (int)t);
260                         return 0;
261                 }
262                 ERROR(binder_interface, "%s: Error at CAN device initialization. No devices read from configuration file", __FUNCTION__);
263                 return 1;
264         }
265         ERROR(binder_interface, "%s: Can't read INI configuration file", __FUNCTION__);
266         return 2;
267 }
268
269 /// @brief return new_can_message_cv_ member
270 ///
271 /// @return  return new_can_message_cv_ member
272 std::condition_variable& can_bus_t::get_new_can_message_cv()
273 {
274         return new_can_message_cv_;
275 }
276
277 /// @brief return can_message_mutex_ member
278 ///
279 /// @return  return can_message_mutex_ member
280 std::mutex& can_bus_t::get_can_message_mutex()
281 {
282         return can_message_mutex_;
283 }
284
285 /// @brief Return first can_message_t on the queue
286 ///
287 /// @return a can_message_t
288 can_message_t can_bus_t::next_can_message()
289 {
290         can_message_t can_msg;
291
292         if(!can_message_q_.empty())
293         {
294                 can_msg = can_message_q_.front();
295                 can_message_q_.pop();
296                 DEBUG(binder_interface, "%s: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", __FUNCTION__, can_msg.get_id(), can_msg.get_length(),
297                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
298                 return can_msg;
299         }
300
301         return can_msg;
302 }
303
304 /// @brief Push a can_message_t into the queue
305 ///
306 /// @param[in] can_msg - the const reference can_message_t object to push into the queue
307 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
308 {
309         can_message_q_.push(can_msg);
310 }
311
312 /// @brief Return first openxc_VehicleMessage on the queue
313 ///
314 /// @return a openxc_VehicleMessage containing a decoded can message
315 openxc_VehicleMessage can_bus_t::next_vehicle_message()
316 {
317         openxc_VehicleMessage v_msg;
318
319         if(! vehicle_message_q_.empty())
320         {
321                 v_msg = vehicle_message_q_.front();
322                 vehicle_message_q_.pop();
323                 DEBUG(binder_interface, "%s: next vehicle message poped", __FUNCTION__);
324                 return v_msg;
325         }
326
327         return v_msg;
328 }
329
330 /// @brief Push a openxc_VehicleMessage into the queue
331 ///
332 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
333 void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
334 {
335         vehicle_message_q_.push(v_msg);
336 }
337
338 /// @brief Return a map with the can_bus_dev_t initialized
339 ///
340 /// @return map can_bus_dev_m_ map
341 const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
342 {
343         return can_bus_t::can_devices_;
344 }
345
346 /// @brief Return the shared pointer on the can_bus_dev_t initialized 
347 /// with device_name "bus"
348 ///
349 /// @param[in] bus - CAN bus device name to retrieve.
350 ///
351 /// @return A shared pointer on an object can_bus_dev_t
352 std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
353 {
354         return can_bus_t::can_devices_[bus];
355 }