Typo, rename, format
[apps/agl-service-can-low-level.git] / CAN-binder / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <net/if.h>
19 #include <sys/socket.h>
20 #include <json-c/json.h>
21 #include <linux/can/raw.h>
22 #include <map>
23 #include <cerrno>
24 #include <vector>
25 #include <string>
26 #include <algorithm>
27
28 #include "can-bus.hpp"
29
30 #include "can-signals.hpp"
31 #include "can-decoder.hpp"
32 #include "../configuration.hpp"
33 #include "../utils/signals.hpp"
34 #include "../utils/openxc-utils.hpp"
35
36 extern "C"
37 {
38         #include <afb/afb-binding.h>
39 }
40
41 /// @brief Class constructor
42 ///
43 /// @param[in] conf_file - handle to the json configuration file.
44 can_bus_t::can_bus_t(utils::config_parser_t conf_file)
45         : conf_file_{conf_file}
46 {}
47
48 std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;
49
50 /// @brief Will make the decoding operation on a classic CAN message. It will not
51 /// handle CAN commands nor diagnostic messages that have their own method to get
52 /// this happens.
53 ///
54 /// It will add to the vehicle_message queue the decoded message and tell the event push
55 /// thread to process it.
56 ///
57 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
58 ///
59 /// @return How many signals has been decoded.
60 int can_bus_t::process_can_signals(can_message_t& can_message)
61 {
62         int processed_signals = 0;
63         struct utils::signals_found signals;
64         openxc_DynamicField search_key, decoded_message;
65         openxc_VehicleMessage vehicle_message;
66         configuration_t& conf = configuration_t::instance();
67         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
68
69         // First we have to found which can_signal_t it is
70         search_key = build_DynamicField((double)can_message.get_id());
71         signals = sm.find_signals(search_key);
72
73         // Decoding the message ! Don't kill the messenger !
74         for(auto& sig : signals.can_signals)
75         {
76                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
77                 std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
78
79                 // DEBUG message to make easier debugger STL containers...
80                 //DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
81                 //DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
82                 //DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
83                 //DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name));
84                 if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
85                 {
86                         decoded_message = decoder_t::translateSignal(*sig, can_message, conf.get_can_signals());
87
88                         openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
89                         vehicle_message = build_VehicleMessage(s_message);
90
91                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
92                         push_new_vehicle_message(vehicle_message);
93                         processed_signals++;
94                 }
95         }
96
97         DEBUG(binder_interface, "%s: %d/%d CAN signals processed.", __FUNCTION__, processed_signals, (int)signals.can_signals.size());
98         return processed_signals;
99 }
100
101 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
102 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
103 /// the event push thread to process it.
104 ///
105 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
106 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
107 ///
108 /// @return How many signals has been decoded.
109 int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
110 {
111         int processed_signals = 0;
112
113         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
114
115         std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
116         std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
117
118         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
119         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
120                 (s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
121         {
122                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
123                 push_new_vehicle_message(vehicle_message);
124                 processed_signals++;
125         }
126
127         return processed_signals;
128 }
129
130 /// @brief thread to decoding raw CAN messages.
131 ///
132 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
133 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
134 ///
135 /// It will take from the can_message_q_ queue the next can message to process then it search
136 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
137 ///  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
138 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
139 ///  noopDecoder function that will operate on it.
140 ///
141 ///  TODO: make diagnostic messages parsing optionnal.
142 void can_bus_t::can_decode_message()
143 {
144         can_message_t can_message;
145
146         while(is_decoding_)
147         {
148                 {
149                         std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
150                         new_can_message_cv_.wait(can_message_lock);
151                         while(!can_message_q_.empty())
152                         {
153                                 can_message = next_can_message();
154
155                                 if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
156                                         process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
157                                 else
158                                         process_can_signals(can_message);
159                         }
160                 }
161                 new_decoded_can_message_.notify_one();
162         }
163 }
164
165 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
166 /// which are events that has to be pushed.
167 void can_bus_t::can_event_push()
168 {
169         openxc_VehicleMessage v_message;
170         openxc_SimpleMessage s_message;
171         json_object* jo;
172         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
173
174         while(is_pushing_)
175         {
176                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
177                 new_decoded_can_message_.wait(decoded_can_message_lock);
178                 while(!vehicle_message_q_.empty())
179                 {
180                         v_message = next_vehicle_message();
181
182                         s_message = get_simple_message(v_message);
183                         {
184                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
185                                 std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
186                                 if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
187                                 {
188                                         jo = json_object_new_object();
189                                         jsonify_simple(s_message, jo);
190                                         if(afb_event_push(s[std::string(s_message.name)], jo) == 0)
191                                                 on_no_clients(std::string(s_message.name));
192                                 }
193                         }
194                 }
195         }
196 }
197
198 /// @brief Will initialize threads that will decode
199 ///  and push subscribed events.
200 void can_bus_t::start_threads()
201 {
202         is_decoding_ = true;
203         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
204         if(!th_decoding_.joinable())
205                 is_decoding_ = false;
206
207         is_pushing_ = true;
208         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
209         if(!th_pushing_.joinable())
210                 is_pushing_ = false;
211 }
212
213 /// @brief Will stop all threads holded by can_bus_t object
214 ///  which are decoding and pushing then will wait that's
215 /// they'll finish their job.
216 void can_bus_t::stop_threads()
217 {
218         is_decoding_ = false;
219         is_pushing_ = false;
220 }
221
222 /// @brief Will initialize can_bus_dev_t objects after reading
223 /// the configuration file passed in the constructor. All CAN buses
224 /// Initialized here will be added to a vector holding them for
225 /// inventory and later access.
226 ///
227 /// That will initialize CAN socket reading too using a new thread.
228 ///
229 /// @return 0 if ok, other if not.
230 int can_bus_t::init_can_dev()
231 {
232         std::vector<std::string> devices_name;
233         int i = 0;
234         size_t t;
235
236         if(conf_file_.check_conf())
237         {
238                 devices_name = conf_file_.get_devices_name();
239                 if (! devices_name.empty())
240                 {
241                         t = devices_name.size();
242
243                         for(const auto& device : devices_name)
244                         {
245                                 can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
246                                 if (can_bus_t::can_devices_[device]->open() >= 0)
247                                 {
248                                         can_bus_t::can_devices_[device]->configure();
249                                         DEBUG(binder_interface, "%s: Start reading thread", __FUNCTION__);
250                                         NOTICE(binder_interface, "%s: %s device opened and reading", __FUNCTION__, device.c_str());
251                                         can_bus_t::can_devices_[device]->start_reading(*this);
252                                         i++;
253                                 }
254                                 else
255                                 {
256                                         ERROR(binder_interface, "%s: Can't open device %s", __FUNCTION__, device.c_str());
257                                         return 1;
258                                 }
259                         }
260                         NOTICE(binder_interface, "%s: Initialized %d/%d can bus device(s)", __FUNCTION__, i, (int)t);
261                         return 0;
262                 }
263                 ERROR(binder_interface, "%s: Error at CAN device initialization. No devices read from configuration file", __FUNCTION__);
264                 return 1;
265         }
266         ERROR(binder_interface, "%s: Can't read INI configuration file", __FUNCTION__);
267         return 2;
268 }
269
270 /// @brief return new_can_message_cv_ member
271 ///
272 /// @return  return new_can_message_cv_ member
273 std::condition_variable& can_bus_t::get_new_can_message_cv()
274 {
275         return new_can_message_cv_;
276 }
277
278 /// @brief return can_message_mutex_ member
279 ///
280 /// @return  return can_message_mutex_ member
281 std::mutex& can_bus_t::get_can_message_mutex()
282 {
283         return can_message_mutex_;
284 }
285
286 /// @brief Return first can_message_t on the queue
287 ///
288 /// @return a can_message_t
289 can_message_t can_bus_t::next_can_message()
290 {
291         can_message_t can_msg;
292
293         if(!can_message_q_.empty())
294         {
295                 can_msg = can_message_q_.front();
296                 can_message_q_.pop();
297                 DEBUG(binder_interface, "%s: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", __FUNCTION__, can_msg.get_id(), can_msg.get_length(),
298                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
299                 return can_msg;
300         }
301
302         return can_msg;
303 }
304
305 /// @brief Push a can_message_t into the queue
306 ///
307 /// @param[in] can_msg - the const reference can_message_t object to push into the queue
308 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
309 {
310         can_message_q_.push(can_msg);
311 }
312
313 /// @brief Return first openxc_VehicleMessage on the queue
314 ///
315 /// @return a openxc_VehicleMessage containing a decoded can message
316 openxc_VehicleMessage can_bus_t::next_vehicle_message()
317 {
318         openxc_VehicleMessage v_msg;
319
320         if(! vehicle_message_q_.empty())
321         {
322                 v_msg = vehicle_message_q_.front();
323                 vehicle_message_q_.pop();
324                 DEBUG(binder_interface, "%s: next vehicle message poped", __FUNCTION__);
325                 return v_msg;
326         }
327
328         return v_msg;
329 }
330
331 /// @brief Push a openxc_VehicleMessage into the queue
332 ///
333 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
334 void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
335 {
336         vehicle_message_q_.push(v_msg);
337 }
338
339 /// @brief Create a RX_SETUP receive job for the BCM socket of a CAN signal.
340 ///
341 /// @return 0 if ok -1 if not.
342         int can_bus_t::create_rx_filter(const can_signal_t& s)
343         {
344                 const std::string& bus  = s.get_message().get_bus_name();
345                 return can_bus_t::can_devices_[bus]->create_rx_filter(s);
346         }
347
348 /// @brief Return a map with the can_bus_dev_t initialized
349 ///
350 /// @return map can_bus_dev_m_ map
351 const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
352 {
353         return can_bus_t::can_devices_;
354 }
355
356 /// @brief Return the shared pointer on the can_bus_dev_t initialized 
357 /// with device_name "bus"
358 ///
359 /// @param[in] bus - CAN bus device name to retrieve.
360 ///
361 /// @return A shared pointer on an object can_bus_dev_t
362 std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
363 {
364         return can_bus_t::can_devices_[bus];
365 }