Cleanup include and prepare to switch binding v2
[apps/agl-service-can-low-level.git] / CAN-binder / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <net/if.h>
19 #include <sys/socket.h>
20 #include <json-c/json.h>
21 #include <linux/can/raw.h>
22 #include <map>
23 #include <cerrno>
24 #include <vector>
25 #include <string>
26 #include <algorithm>
27
28 #include "can-bus.hpp"
29
30 #include "can-signals.hpp"
31 #include "can-decoder.hpp"
32 #include "../binding/application.hpp"
33 #include "../utils/signals.hpp"
34 #include "../utils/openxc-utils.hpp"
35
36 /// @brief Class constructor
37 ///
38 /// @param[in] conf_file - handle to the json configuration file.
39 can_bus_t::can_bus_t(utils::config_parser_t conf_file)
40         : conf_file_{conf_file}
41 {}
42
43 bool can_bus_t::apply_filter(const openxc_VehicleMessage& vehicle_message, std::shared_ptr<low_can_subscription_t> can_subscription)
44 {
45         bool send = false;
46         if(is_valid(vehicle_message))
47         {
48                 float min = std::isnan(can_subscription->get_min()) ? -INFINITY : can_subscription->get_min();
49                 float max = std::isnan(can_subscription->get_max()) ? INFINITY : can_subscription->get_max();
50                 double value = get_numerical_from_DynamicField(vehicle_message);
51                 send = (value < min && value > max) ? false : true;
52         }
53         return send;
54 }
55
56 /// @brief Will make the decoding operation on a classic CAN message. It will not
57 /// handle CAN commands nor diagnostic messages that have their own method to get
58 /// this happens.
59 ///
60 /// It will add to the vehicle_message queue the decoded message and tell the event push
61 /// thread to process it.
62 ///
63 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
64 ///
65 /// @return How many signals has been decoded.
66 void can_bus_t::process_can_signals(const can_message_t& can_message, std::map<int, std::shared_ptr<low_can_subscription_t> >& s)
67 {
68         int subscription_id = can_message.get_sub_id();
69         openxc_DynamicField decoded_message;
70         openxc_VehicleMessage vehicle_message;
71
72         // First we have to found which can_signal_t it is
73         std::shared_ptr<low_can_subscription_t> sig = s[subscription_id];
74
75         if( s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
76         {
77                 bool send = true;
78                 decoded_message = decoder_t::translateSignal(*sig->get_can_signal(), can_message, application_t::instance().get_all_can_signals(), &send);
79                 openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
80                 vehicle_message = build_VehicleMessage(s_message, can_message.get_timestamp());
81
82                 if(send && apply_filter(vehicle_message, sig))
83                 {
84                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
85                         push_new_vehicle_message(subscription_id, vehicle_message);
86                         DEBUG(binder_interface, "%s: %s CAN signals processed.", __FUNCTION__,  sig->get_name().c_str());
87                 }
88         }
89 }
90
91 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
92 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
93 /// the event push thread to process it.
94 ///
95 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
96 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
97 ///
98 /// @return How many signals has been decoded.
99 void can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message, std::map<int, std::shared_ptr<low_can_subscription_t> >& s)
100 {
101         int subscription_id = can_message.get_sub_id();
102
103         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
104         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
105                 s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
106         {
107                 if (apply_filter(vehicle_message, s[subscription_id]))
108                 {
109                         std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
110                         push_new_vehicle_message(subscription_id, vehicle_message);
111                         DEBUG(binder_interface, "%s: %s CAN signals processed.", __FUNCTION__,  s[subscription_id]->get_name().c_str());
112                 }
113         }
114 }
115
116 /// @brief thread to decoding raw CAN messages.
117 ///
118 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
119 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
120 ///
121 /// It will take from the can_message_q_ queue the next can message to process then it search
122 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
123 ///  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
124 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
125 ///  noopDecoder function that will operate on it.
126 ///
127 ///  TODO: make diagnostic messages parsing optionnal.
128 void can_bus_t::can_decode_message()
129 {
130         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
131
132         while(is_decoding_)
133         {
134                 std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
135                 new_can_message_cv_.wait(can_message_lock);
136                 while(!can_message_q_.empty())
137                 {
138                         const can_message_t can_message = next_can_message();
139                         can_message_lock.unlock();
140
141                         {
142                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
143                                 std::map<int, std::shared_ptr<low_can_subscription_t> >& s = sm.get_subscribed_signals();
144                                 if(application_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
145                                         {process_diagnostic_signals(application_t::instance().get_diagnostic_manager(), can_message, s);}
146                                 else
147                                         {process_can_signals(can_message, s);}
148                         }
149                         can_message_lock.lock();
150                 }
151         new_decoded_can_message_.notify_one();
152         can_message_lock.unlock();
153         }
154 }
155
156 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
157 /// which are events that has to be pushed.
158 void can_bus_t::can_event_push()
159 {
160         openxc_SimpleMessage s_message;
161         json_object* jo;
162         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
163
164         while(is_pushing_)
165         {
166                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
167                 new_decoded_can_message_.wait(decoded_can_message_lock);
168                 while(!vehicle_message_q_.empty())
169                 {
170                         std::pair<int, openxc_VehicleMessage> v_message = next_vehicle_message();
171                         decoded_can_message_lock.unlock();
172                         {
173                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
174                                 std::map<int, std::shared_ptr<low_can_subscription_t> >& s = sm.get_subscribed_signals();
175                                 s_message = get_simple_message(v_message.second);
176                                 if(s.find(v_message.first) != s.end() && afb_event_is_valid(s[v_message.first]->get_event()))
177                                 {
178                                         jo = json_object_new_object();
179                                         jsonify_simple(s_message, jo);
180                                         if(afb_event_push(s[v_message.first]->get_event(), jo) == 0)
181                                         {
182                                                 if(v_message.second.has_diagnostic_response)
183                                                         {on_no_clients(s[v_message.first], v_message.second.diagnostic_response.pid, s);}
184                                                 else
185                                                         {on_no_clients(s[v_message.first], s);}
186                                         }
187                                 }
188                         }
189                         decoded_can_message_lock.lock();
190                 }
191                 decoded_can_message_lock.unlock();
192         }
193 }
194
195 /// @brief Will initialize threads that will decode
196 ///  and push subscribed events.
197 void can_bus_t::start_threads()
198 {
199         is_decoding_ = true;
200         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
201         th_decoding_.detach();
202
203         is_pushing_ = true;
204         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
205         th_pushing_.detach();
206 }
207
208 /// @brief Will stop all threads holded by can_bus_t object
209 ///  which are decoding and pushing then will wait that's
210 /// they'll finish their job.
211 void can_bus_t::stop_threads()
212 {
213         is_decoding_ = false;
214         is_pushing_ = false;
215 }
216
217 /// @brief return new_can_message_cv_ member
218 ///
219 /// @return  return new_can_message_cv_ member
220 std::condition_variable& can_bus_t::get_new_can_message_cv()
221 {
222         return new_can_message_cv_;
223 }
224
225 /// @brief return can_message_mutex_ member
226 ///
227 /// @return  return can_message_mutex_ member
228 std::mutex& can_bus_t::get_can_message_mutex()
229 {
230         return can_message_mutex_;
231 }
232
233 /// @brief Return first can_message_t on the queue
234 ///
235 /// @return a can_message_t
236 const can_message_t can_bus_t::next_can_message()
237 {
238         can_message_t can_msg;
239
240         if(!can_message_q_.empty())
241         {
242                 can_msg = can_message_q_.front();
243                 can_message_q_.pop();
244                 DEBUG(binder_interface, "%s: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", __FUNCTION__, can_msg.get_id(), can_msg.get_length(),
245                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
246                 return can_msg;
247         }
248
249         return can_msg;
250 }
251
252 /// @brief Push a can_message_t into the queue
253 ///
254 /// @param[in] can_msg - the const reference can_message_t object to push into the queue
255 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
256 {
257         can_message_q_.push(can_msg);
258 }
259
260 /// @brief Return first openxc_VehicleMessage on the queue
261 ///
262 /// @return a openxc_VehicleMessage containing a decoded can message
263 std::pair<int, openxc_VehicleMessage> can_bus_t::next_vehicle_message()
264 {
265         std::pair<int, openxc_VehicleMessage> v_msg;
266
267         if(! vehicle_message_q_.empty())
268         {
269                 v_msg = vehicle_message_q_.front();
270                 vehicle_message_q_.pop();
271                 DEBUG(binder_interface, "%s: next vehicle message poped", __FUNCTION__);
272                 return v_msg;
273         }
274
275         return v_msg;
276 }
277
278 /// @brief Push a openxc_VehicleMessage into the queue
279 ///
280 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
281 void can_bus_t::push_new_vehicle_message(int subscription_id, const openxc_VehicleMessage& v_msg)
282 {
283         vehicle_message_q_.push(std::make_pair(subscription_id, v_msg));
284 }
285
286 /// @brief Return the shared pointer on the can_bus_dev_t initialized 
287 /// with device_name "bus"
288 ///
289 /// @param[in] bus - CAN bus device name to retrieve.
290 ///
291 /// @return A shared pointer on an object can_bus_dev_t
292 void can_bus_t::set_can_devices()
293 {
294         can_devices_ = conf_file_.get_devices_name();
295
296         if(can_devices_.empty())
297         {
298                 ERROR(binder_interface, "%s: No mapping found in config file: '%s'. Check it that it have a CANbus-mapping section.",
299                         __FUNCTION__, conf_file_.filepath().c_str());
300         }
301 }
302
303 int can_bus_t::get_can_device_index(const std::string& bus_name) const
304 {
305         int i = 0;
306         for(const auto& d: can_devices_)
307         {
308                 if(d.first == bus_name)
309                         break;
310                 i++;
311         }
312         return i;
313 }
314
315 const std::string can_bus_t::get_can_device_name(const std::string& id_name) const
316 {
317         std::string ret;
318         for(const auto& d: can_devices_)
319         {
320                 if(d.first == id_name)
321                 {
322                         ret = d.second;
323                         break;
324                 }
325         }
326         return ret;
327 }