cc0a3d6c84b5c031a968a56720d9c1eba2c7e1fd
[apps/agl-service-can-low-level.git] / CAN-binder / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <net/if.h>
19 #include <sys/socket.h>
20 #include <json-c/json.h>
21 #include <linux/can/raw.h>
22 #include <map>
23 #include <cerrno>
24 #include <vector>
25 #include <string>
26 #include <algorithm>
27
28 #include "can-bus.hpp"
29
30 #include "can-signals.hpp"
31 #include "can-decoder.hpp"
32 #include "../binding/application.hpp"
33 #include "../utils/signals.hpp"
34 #include "../utils/openxc-utils.hpp"
35
36 extern "C"
37 {
38         #include <afb/afb-binding.h>
39 }
40
41 /// @brief Class constructor
42 ///
43 /// @param[in] conf_file - handle to the json configuration file.
44 can_bus_t::can_bus_t(utils::config_parser_t conf_file)
45         : conf_file_{conf_file}
46 {}
47
48 bool can_bus_t::apply_filter(const openxc_VehicleMessage& vehicle_message, std::shared_ptr<low_can_subscription_t> can_subscription)
49 {
50         if(is_valid(vehicle_message))
51         {
52                 return true;
53         }
54         return false;
55 }
56
57 /// @brief Will make the decoding operation on a classic CAN message. It will not
58 /// handle CAN commands nor diagnostic messages that have their own method to get
59 /// this happens.
60 ///
61 /// It will add to the vehicle_message queue the decoded message and tell the event push
62 /// thread to process it.
63 ///
64 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
65 ///
66 /// @return How many signals has been decoded.
67 void can_bus_t::process_can_signals(const can_message_t& can_message)
68 {
69         int subscription_id = can_message.get_sub_id();
70         openxc_DynamicField decoded_message;
71         openxc_VehicleMessage vehicle_message;
72         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
73
74         {
75                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
76                 std::map<int, std::shared_ptr<low_can_subscription_t> >& s = sm.get_subscribed_signals();
77
78                 // First we have to found which can_signal_t it is
79                 std::shared_ptr<low_can_subscription_t> sig = s[subscription_id];
80
81                 if( s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
82                 {
83                         bool send = true;
84                         decoded_message = decoder_t::translateSignal(*sig->get_can_signal(), can_message, application_t::instance().get_all_can_signals(), &send);
85                         openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
86                         vehicle_message = build_VehicleMessage(s_message, can_message.get_timestamp());
87
88                         if(send && apply_filter(vehicle_message, sig))
89                         {
90                                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
91                                 push_new_vehicle_message(subscription_id, vehicle_message);
92                                 DEBUG(binder_interface, "%s: %s CAN signals processed.", __FUNCTION__,  sig->get_name().c_str());
93                         }
94                 }
95         }
96 }
97
98 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
99 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
100 /// the event push thread to process it.
101 ///
102 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
103 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
104 ///
105 /// @return How many signals has been decoded.
106 void can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
107 {
108         int subscription_id = can_message.get_sub_id();
109
110         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
111
112         {
113                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
114                 std::map<int, std::shared_ptr<low_can_subscription_t> >& s = sm.get_subscribed_signals();
115
116                 openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
117                 if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
118                         s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
119                 {
120                         if (apply_filter(vehicle_message, s[subscription_id]))
121                         {
122                                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
123                                 push_new_vehicle_message(subscription_id, vehicle_message);
124                                 DEBUG(binder_interface, "%s: %s CAN signals processed.", __FUNCTION__,  s[subscription_id]->get_name().c_str());
125                         }
126                 }
127         }
128 }
129
130 /// @brief thread to decoding raw CAN messages.
131 ///
132 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
133 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
134 ///
135 /// It will take from the can_message_q_ queue the next can message to process then it search
136 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
137 ///  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
138 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
139 ///  noopDecoder function that will operate on it.
140 ///
141 ///  TODO: make diagnostic messages parsing optionnal.
142 void can_bus_t::can_decode_message()
143 {
144         while(is_decoding_)
145         {
146                 {
147                         std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
148                         new_can_message_cv_.wait(can_message_lock);
149                         while(!can_message_q_.empty())
150                         {
151                                 const can_message_t can_message = next_can_message();
152
153                                 if(application_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
154                                         process_diagnostic_signals(application_t::instance().get_diagnostic_manager(), can_message);
155                                 else
156                                         process_can_signals(can_message);
157                         }
158                 }
159                 new_decoded_can_message_.notify_one();
160         }
161 }
162
163 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
164 /// which are events that has to be pushed.
165 void can_bus_t::can_event_push()
166 {
167         std::pair<int, openxc_VehicleMessage> v_message;
168         openxc_SimpleMessage s_message;
169         json_object* jo;
170         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
171
172         while(is_pushing_)
173         {
174                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
175                 new_decoded_can_message_.wait(decoded_can_message_lock);
176                 while(!vehicle_message_q_.empty())
177                 {
178                         v_message = next_vehicle_message();
179                         s_message = get_simple_message(v_message.second);
180                         {
181                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
182                                 std::map<int, std::shared_ptr<low_can_subscription_t> >& s = sm.get_subscribed_signals();
183                                 if(s.find(v_message.first) != s.end() && afb_event_is_valid(s[v_message.first]->get_event()))
184                                 {
185                                         jo = json_object_new_object();
186                                         jsonify_simple(s_message, jo);
187                                         if(afb_event_push(s[v_message.first]->get_event(), jo) == 0)
188                                                 on_no_clients(std::string(s_message.name));
189                                 }
190                         }
191                 }
192         }
193 }
194
195 /// @brief Will initialize threads that will decode
196 ///  and push subscribed events.
197 void can_bus_t::start_threads()
198 {
199         is_decoding_ = true;
200         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
201         if(!th_decoding_.joinable())
202                 is_decoding_ = false;
203
204         is_pushing_ = true;
205         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
206         if(!th_pushing_.joinable())
207                 is_pushing_ = false;
208 }
209
210 /// @brief Will stop all threads holded by can_bus_t object
211 ///  which are decoding and pushing then will wait that's
212 /// they'll finish their job.
213 void can_bus_t::stop_threads()
214 {
215         is_decoding_ = false;
216         is_pushing_ = false;
217 }
218
219 /// @brief return new_can_message_cv_ member
220 ///
221 /// @return  return new_can_message_cv_ member
222 std::condition_variable& can_bus_t::get_new_can_message_cv()
223 {
224         return new_can_message_cv_;
225 }
226
227 /// @brief return can_message_mutex_ member
228 ///
229 /// @return  return can_message_mutex_ member
230 std::mutex& can_bus_t::get_can_message_mutex()
231 {
232         return can_message_mutex_;
233 }
234
235 /// @brief Return first can_message_t on the queue
236 ///
237 /// @return a can_message_t
238 const can_message_t can_bus_t::next_can_message()
239 {
240         can_message_t can_msg;
241
242         if(!can_message_q_.empty())
243         {
244                 can_msg = can_message_q_.front();
245                 can_message_q_.pop();
246                 DEBUG(binder_interface, "%s: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", __FUNCTION__, can_msg.get_id(), can_msg.get_length(),
247                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
248                 return can_msg;
249         }
250
251         return can_msg;
252 }
253
254 /// @brief Push a can_message_t into the queue
255 ///
256 /// @param[in] can_msg - the const reference can_message_t object to push into the queue
257 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
258 {
259         can_message_q_.push(can_msg);
260 }
261
262 /// @brief Return first openxc_VehicleMessage on the queue
263 ///
264 /// @return a openxc_VehicleMessage containing a decoded can message
265 std::pair<int, openxc_VehicleMessage> can_bus_t::next_vehicle_message()
266 {
267         std::pair<int, openxc_VehicleMessage> v_msg;
268
269         if(! vehicle_message_q_.empty())
270         {
271                 v_msg = vehicle_message_q_.front();
272                 vehicle_message_q_.pop();
273                 DEBUG(binder_interface, "%s: next vehicle message poped", __FUNCTION__);
274                 return v_msg;
275         }
276
277         return v_msg;
278 }
279
280 /// @brief Push a openxc_VehicleMessage into the queue
281 ///
282 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
283 void can_bus_t::push_new_vehicle_message(int subscription_id, const openxc_VehicleMessage& v_msg)
284 {
285         vehicle_message_q_.push(std::make_pair(subscription_id, v_msg));
286 }
287
288 /// @brief Return the shared pointer on the can_bus_dev_t initialized 
289 /// with device_name "bus"
290 ///
291 /// @param[in] bus - CAN bus device name to retrieve.
292 ///
293 /// @return A shared pointer on an object can_bus_dev_t
294 void can_bus_t::set_can_devices()
295 {
296         can_devices_ = conf_file_.get_devices_name();
297
298         if(can_devices_.empty())
299         {
300                 ERROR(binder_interface, "%s: No mapping found in config file: '%s'. Check it that it have a CANbus-mapping section.",
301                         __FUNCTION__, conf_file_.filepath().c_str());
302         }
303 }
304
305 int can_bus_t::get_can_device_index(const std::string& bus_name) const
306 {
307         int i = 0;
308         for(const auto& d: can_devices_)
309         {
310                 if(d.first == bus_name)
311                         break;
312                 i++;
313         }
314         return i;
315 }
316
317 const std::string can_bus_t::get_can_device_name(const std::string& id_name) const
318 {
319         std::string ret;
320         for(const auto& d: can_devices_)
321         {
322                 if(d.first == id_name)
323                 {
324                         ret = d.second;
325                         break;
326                 }
327         }
328         return ret;
329 }