Keeping RAW sockets for compatibility
[apps/low-level-can-service.git] / CAN-binder / low-can-binding / can / can-bus.cpp
1 /*
2  * Copyright (C) 2015, 2016 "IoT.bzh"
3  * Author "Romain Forlot" <romain.forlot@iot.bzh>
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *       http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include <net/if.h>
19 #include <sys/socket.h>
20 #include <json-c/json.h>
21 #include <linux/can/raw.h>
22 #include <map>
23 #include <cerrno>
24 #include <vector>
25 #include <string>
26 #include <algorithm>
27
28 #include "can-bus.hpp"
29
30 #include "can-signals.hpp"
31 #include "can-decoder.hpp"
32 #include "../binding/configuration.hpp"
33 #include "../utils/signals.hpp"
34 #include "../utils/openxc-utils.hpp"
35
36 extern "C"
37 {
38         #include <afb/afb-binding.h>
39 }
40
41 /// @brief Class constructor
42 ///
43 /// @param[in] conf_file - handle to the json configuration file.
44 can_bus_t::can_bus_t(utils::config_parser_t conf_file)
45         : conf_file_{conf_file}
46 {}
47
48 std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;
49
50 /// @brief Will make the decoding operation on a classic CAN message. It will not
51 /// handle CAN commands nor diagnostic messages that have their own method to get
52 /// this happens.
53 ///
54 /// It will add to the vehicle_message queue the decoded message and tell the event push
55 /// thread to process it.
56 ///
57 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
58 ///
59 /// @return How many signals has been decoded.
60 int can_bus_t::process_can_signals(const can_message_t& can_message)
61 {
62         int processed_signals = 0;
63         struct utils::signals_found signals;
64         openxc_DynamicField search_key, decoded_message;
65         openxc_VehicleMessage vehicle_message;
66         configuration_t& conf = configuration_t::instance();
67         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
68
69         // First we have to found which can_signal_t it is
70         search_key = build_DynamicField((double)can_message.get_id());
71         signals = sm.find_signals(search_key);
72
73         // Decoding the message ! Don't kill the messenger !
74         for(auto& sig : signals.can_signals)
75         {
76                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
77                 std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
78
79                 // DEBUG message to make easier debugger STL containers...
80                 //DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
81                 //DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
82                 //DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
83                 //DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name));
84                 if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
85                 {
86                         bool send = true;
87                         decoded_message = decoder_t::translateSignal(*sig, can_message, conf.get_can_signals(), &send);
88
89                         if(send)
90                         {
91                                 openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
92                                 vehicle_message = build_VehicleMessage(s_message);
93
94                                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
95                                 push_new_vehicle_message(vehicle_message);
96                         }
97                         processed_signals++;
98                 }
99         }
100
101         DEBUG(binder_interface, "%s: %d/%d CAN signals processed.", __FUNCTION__, processed_signals, (int)signals.can_signals.size());
102         return processed_signals;
103 }
104
105 /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
106 /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
107 /// the event push thread to process it.
108 ///
109 /// @param[in] manager - the diagnostic manager object that handle diagnostic communication
110 /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
111 ///
112 /// @return How many signals has been decoded.
113 int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
114 {
115         int processed_signals = 0;
116
117         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
118
119         std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
120         std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
121
122         openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
123         if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
124                 (s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
125         {
126                 std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
127                 push_new_vehicle_message(vehicle_message);
128                 processed_signals++;
129         }
130
131         return processed_signals;
132 }
133
134 /// @brief thread to decoding raw CAN messages.
135 ///
136 ///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
137 ///  then decoding a diagnostic message else use classic CAN signals decoding functions.
138 ///
139 /// It will take from the can_message_q_ queue the next can message to process then it search
140 ///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
141 ///  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
142 ///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
143 ///  noopDecoder function that will operate on it.
144 ///
145 ///  TODO: make diagnostic messages parsing optionnal.
146 void can_bus_t::can_decode_message()
147 {
148         can_message_t can_message;
149
150         while(is_decoding_)
151         {
152                 {
153                         std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
154                         new_can_message_cv_.wait(can_message_lock);
155                         while(!can_message_q_.empty())
156                         {
157                                 can_message = next_can_message();
158
159                                 if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
160                                         process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
161                                 else
162                                         process_can_signals(can_message);
163                         }
164                 }
165                 new_decoded_can_message_.notify_one();
166         }
167 }
168
169 /// @brief thread to push events to suscribers. It will read subscribed_signals map to look
170 /// which are events that has to be pushed.
171 void can_bus_t::can_event_push()
172 {
173         openxc_VehicleMessage v_message;
174         openxc_SimpleMessage s_message;
175         json_object* jo;
176         utils::signals_manager_t& sm = utils::signals_manager_t::instance();
177
178         while(is_pushing_)
179         {
180                 std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
181                 new_decoded_can_message_.wait(decoded_can_message_lock);
182                 while(!vehicle_message_q_.empty())
183                 {
184                         v_message = next_vehicle_message();
185
186                         s_message = get_simple_message(v_message);
187                         {
188                                 std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
189                                 std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
190                                 if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
191                                 {
192                                         jo = json_object_new_object();
193                                         jsonify_simple(s_message, jo);
194                                         if(afb_event_push(s[std::string(s_message.name)], jo) == 0)
195                                                 on_no_clients(std::string(s_message.name));
196                                 }
197                         }
198                 }
199         }
200 }
201
202 /// @brief Will initialize threads that will decode
203 ///  and push subscribed events.
204 void can_bus_t::start_threads()
205 {
206         is_decoding_ = true;
207         th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
208         if(!th_decoding_.joinable())
209                 is_decoding_ = false;
210
211         is_pushing_ = true;
212         th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
213         if(!th_pushing_.joinable())
214                 is_pushing_ = false;
215 }
216
217 /// @brief Will stop all threads holded by can_bus_t object
218 ///  which are decoding and pushing then will wait that's
219 /// they'll finish their job.
220 void can_bus_t::stop_threads()
221 {
222         is_decoding_ = false;
223         is_pushing_ = false;
224 }
225
226 /// @brief Will initialize can_bus_dev_t objects after reading
227 /// the configuration file passed in the constructor. All CAN buses
228 /// Initialized here will be added to a vector holding them for
229 /// inventory and later access.
230 ///
231 /// That will initialize CAN socket reading too using a new thread.
232 ///
233 /// @return 0 if ok, other if not.
234 int can_bus_t::init_can_dev()
235 {
236         std::vector<std::string> devices_name;
237         int i = 0;
238         size_t t;
239
240         if(conf_file_.check_conf())
241         {
242                 devices_name = conf_file_.get_devices_name();
243                 if (! devices_name.empty())
244                 {
245                         t = devices_name.size();
246
247                         for(const auto& device : devices_name)
248                         {
249                                 can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
250                                 if (can_bus_t::can_devices_[device]->open() >= 0)
251                                 {
252                                         can_bus_t::can_devices_[device]->configure();
253                                         DEBUG(binder_interface, "%s: Start reading thread", __FUNCTION__);
254                                         NOTICE(binder_interface, "%s: %s device opened and reading", __FUNCTION__, device.c_str());
255                                         //can_bus_t::can_devices_[device]->start_reading(*this);
256                                         i++;
257                                 }
258                                 else
259                                 {
260                                         ERROR(binder_interface, "%s: Can't open device %s", __FUNCTION__, device.c_str());
261                                         return 1;
262                                 }
263                         }
264                         NOTICE(binder_interface, "%s: Initialized %d/%d can bus device(s)", __FUNCTION__, i, (int)t);
265                         return 0;
266                 }
267                 ERROR(binder_interface, "%s: Error at CAN device initialization. No devices read from configuration file", __FUNCTION__);
268                 return 1;
269         }
270         ERROR(binder_interface, "%s: Can't read INI configuration file", __FUNCTION__);
271         return 2;
272 }
273
274 /// @brief return new_can_message_cv_ member
275 ///
276 /// @return  return new_can_message_cv_ member
277 std::condition_variable& can_bus_t::get_new_can_message_cv()
278 {
279         return new_can_message_cv_;
280 }
281
282 /// @brief return can_message_mutex_ member
283 ///
284 /// @return  return can_message_mutex_ member
285 std::mutex& can_bus_t::get_can_message_mutex()
286 {
287         return can_message_mutex_;
288 }
289
290 /// @brief Return first can_message_t on the queue
291 ///
292 /// @return a can_message_t
293 can_message_t can_bus_t::next_can_message()
294 {
295         can_message_t can_msg;
296
297         if(!can_message_q_.empty())
298         {
299                 can_msg = can_message_q_.front();
300                 can_message_q_.pop();
301                 DEBUG(binder_interface, "%s: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", __FUNCTION__, can_msg.get_id(), can_msg.get_length(),
302                         can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
303                 return can_msg;
304         }
305
306         return can_msg;
307 }
308
309 /// @brief Push a can_message_t into the queue
310 ///
311 /// @param[in] can_msg - the const reference can_message_t object to push into the queue
312 void can_bus_t::push_new_can_message(const can_message_t& can_msg)
313 {
314         can_message_q_.push(can_msg);
315 }
316
317 /// @brief Return first openxc_VehicleMessage on the queue
318 ///
319 /// @return a openxc_VehicleMessage containing a decoded can message
320 openxc_VehicleMessage can_bus_t::next_vehicle_message()
321 {
322         openxc_VehicleMessage v_msg;
323
324         if(! vehicle_message_q_.empty())
325         {
326                 v_msg = vehicle_message_q_.front();
327                 vehicle_message_q_.pop();
328                 DEBUG(binder_interface, "%s: next vehicle message poped", __FUNCTION__);
329                 return v_msg;
330         }
331
332         return v_msg;
333 }
334
335 /// @brief Push a openxc_VehicleMessage into the queue
336 ///
337 /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
338 void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
339 {
340         vehicle_message_q_.push(v_msg);
341 }
342
343 /// @brief Return a map with the can_bus_dev_t initialized
344 ///
345 /// @return map can_bus_dev_m_ map
346 const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
347 {
348         return can_bus_t::can_devices_;
349 }
350
351 /// @brief Return the shared pointer on the can_bus_dev_t initialized 
352 /// with device_name "bus"
353 ///
354 /// @param[in] bus - CAN bus device name to retrieve.
355 ///
356 /// @return A shared pointer on an object can_bus_dev_t
357 std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
358 {
359         return can_bus_t::can_devices_[bus];
360 }